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1. Introduction 

A general scope of AFRI4Cast project is to provide a proof of principle for the idea of using Thermal and 
Hyperspectral, enhanced and downscaled on spatial and temporal dimensions, as inputs to Crop 
Growth/Disease models, at crop parcel spatial scale. The feasibility of this concept is regarded 
specifically for the satellite missions of ECOSTRESS thermal and PRISMA hyperspectral data products 
as the input data. 

Deliverable D7.1 represents a comprehensive compilation of all aspects detailed in the ATBD document, 
reflecting a holistic approach to presenting our work. This decision to expand the work on D7 into an 
extended document D7.1 from its original format, underscores our commitment to showcasing the 
entirety of our efforts in a cohesive manner. By consolidating all related tasks and findings into one 
document, the aim is  to provide a thorough exploration of the ATBD’s contents. This includes not only 
outlining the technical specifications and methodologies but also detailing the iterative processes and 
collaborative insights that have shaped the development of fusion algorithms. 

The current  ATBD document encapsulates a continuum of research and development efforts that 
converge towards the singular objective of enhancing fusion algorithms. Each section within D7.1 builds 
upon the preceding ones, fostering a comprehensive understanding of the complexities and nuances 
involved. By presenting the full spectrum of our work in this extended format, we ensure transparency 
and clarity, facilitating a deeper appreciation of the methodology evolution and the strategic decisions 
guiding its implementation. This approach not only enhances the document’s utility as a reference but 
also reinforces our commitment to delivering robust and innovative solutions in the realm of 
algorithmic fusion. 

For that cause several state-of-the-art algorithms that deal with the topics below have been adopted, 
modified and developed in order to be applied on the above-mentioned data products: 

● EO data acquisition and pre-processing 

● Curve Fitting 

● Deep Learning Image Fusion 

● RTM Inversion 

The project’s main proof of principle over the framework of algorithm development was to present: 

● data pre-processing routines and solutions tailored to the input data products specificities 

● evaluated performance on the data fusion tasks, comparable with that is achieved, by other 
operational thermal and hyperspectral products, over current technical and scientific literature 

The demonstration of the project’s proof of concept feasibility at that point, involved 

● the determination input data product specifications 

● the development of the input data acquisition tool components 
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● the experimental setting design 

● the development of image processing algorithm tools 

● the development of data fusion algorithm tools and models 

● the development of RTM inversion models 

The current ATBD aims to provide a detailed specification of the processing algorithms of the EO 
solution proposed by the project. Technical considerations justifying the selected methodologies are 
provided.  It includes a functional description of each selected algorithm with a “high level” 
mathematical description of the problem formulation and a precise specification of all input data, 
processing steps, calibration parameters and output products. Finally, the ATBD provides the final 
validation results from the algorithm performance over the experimental setup obtained at the 2nd 
iteration of algorithm development, testing and analysis. 

 
Algorithm Theoretical Baseline Document Structure 

In the presented report a detailed description of the implemented algorithms for the processing and 
analysis of the EO data, which are related to the AFRI4Cast project, is attempted. In the respective 
chapters, the 3 main thematic areas are developed as separate subjects: 

● Thermal Data Fusion 

● Hyperspectral Data Fusion 

● Inversion of RTMs for Biophysical Parameters Estimation 

In each of the preceding chapters, the same sub-chapter organization is consistently followed 
throughout the text, describing: 

1. the main task objectives 

2. the features and specificities of the EO data products used 

3. the overall data processing pipeline in a flowchart form  

4. the secondary subtasks that involve image acquisition pipelines and the creation of a test dataset 
based on the experimental design of the project. 

5. the subtasks dealing with satellite data pre-processing methods. Procedures such as quality 
masking in thermal images, evaluation of spectral channels of a Hyperspectral image, 
sharpening of channels of a Multispectral image to a common spatial resolution, or even 
registration of HS-MS image pairs, are described here.  

6. the main subtasks of algorithm development for applications of Curve Fitting, Deep Learning 
Data Fusion, Machine Learning modeling for the inversion of RTMs, where the stronger 
emphasis is given to the description. 

7. The updated results obtained at the 2nd iteration of algorithm development, testing and analysis 
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2. Thermal Data Fusion 
 
2.1. Objectives 

Land surface temperature (LST), or the skin temperature of the Earth's surface, is a major variable in 
climate systems and has been used as a key parameter to predict surface energy balance. Concerning 
the remote sensing-derived LST products, there are certain trade-offs between the spatial and temporal 
resolution of the available products and many studies have proposed various spatiotemporal 
downscaling approaches utilizing multi-sensor data to address these trade-offs. 
 
In particular, thermal data fusion-based approaches determine the relationship between known image 
pairs of LST at fine and coarse resolution and downscale the coarse resolution image when a fine 
resolution LST image is not available. Within AFRI4Cast, ECOSTRESS LST data was intended to be 
sharpened using a deep learning-based Spatiotemporal Temperature Fusion Network (STFN) method 
aiming to generate fine resolution spatiotemporal LST products. In STFN, a multi-scale fusion 
convolutional neural network (CNN) was used to construct the complex nonlinear relationship between 
input and output LSTs. 
 
ECOSTRESS and MODIS LST data were used as fine and coarse spatial resolution thermal data, 
respectively. Specifically, a pair of fine and coarse LST images before the target date, for which a coarse 
MODIS image was available, as well as another pair of fine and coarse images after the target date were 
collected. The objective of the Spatiotemporal Temperature Fusion Network was to predict a high 
resolution ECOSTRESS-like LST image using one MODIS LST image at the target date and two pairs of 
ECOSTRESS and MODIS images from nearby dates. 
 
 

2.2. Data Products 

The current chapter presents the designated thermal Earth Observation (EO) data products to be 
utilized within AFRI4Cast’s framework. These products facilitate the data processing pipelines and 
some of them contribute to the validation of the results, as well (Table 1.). MODIS Terra/Aqua 
Day/Night LST, ECOSTRESS LST and Sentinel-3 SLSTR L2 LST observations are mentioned below 
along with the ERA5-Land REA (reanalysis) data product. For more detailed information, please refer 
to the Deliverable D3 “State of the art review report on analysis methods and algorithms”, Chapter “3. 
Input data products for AFRI4Cast EO Services”. 

 
Table 1. Thermal data products and their use within AFRI4Cast. 

Product Purpose of Use 

MODIS Terra/Aqua Day/Night LST Calibration of DTC, STTFN reference layer 
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ECOSTRESS LST STTFN target layer 

Sentinel-3 SLSTR L2 LST Validation of the DTC produced LST 

ERA5-Land REA DTC Initial values 

 
 
MODIS Terra/ Aqua Day/Night LST 

The Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface 
Temperature/Emissivity (LST&E) Level 3 products, MOD11A1 and MYD11A1 respectively, Version 6.1 
provide daily and global LST and emissivity observations in a spatial resolution of 1km. The layers of 
these data products which were used within AFRI4Cast, as well as their features are presented on Table 
2.  

Regarding MODIS Terra/ Aqua LST acquisition times, they are provided via the data product layers 
“Day_view_time” and “Night_View_Time” in hour units in local solar time. For more information 
regarding the time of acquisitions, please refer to the Chapter “3.4. Τhermal Images Acquisition”. 

 
Table 2. Layers/Variables of the MODIS LST Terra & Aqua data products and their features. 

Product Versio
n Layer 

Layer 
Descriptio

n 
Units Data Type Scale 

Factor 

MYD11A1 061 

Day_view_tim
e 

Local solar 
time of day 
observation 

Hours 
8-bit 

unsigned 
integer 

0.1 

LST_Day_1km 
Day Land 
Surface 

Temperature 
Kelvin 

16-bit 
unsigned 
integer 

0.02 

LST_Night_1k
m 

Night Land 
Surface 

Temperature 
Kelvin 

16-bit 
unsigned 
integer 

0.02 

Night_view_ti
me 

Local solar 
time of night 
observation 

Hours 
8-bit 

unsigned 
integer 

0.1 

QC_Day 
Daytime LST 

Quality 
Indicators 

Bit Field 
8-bit 

unsigned 
integer 

Ν/Α 

QC_Night Nighttime 
LST Quality 

Bit Field 8-bit 
unsigned 

Ν/Α 



D7.1 - Algorithm Theoretical Baseline Documents (ATBDs) and Product Specifications 

 

12 
 

Indicators integer 

MOD11A1 061 

Day_view_tim
e 

Local solar 
time of day 
observation 

Hours 
8-bit 

unsigned 
integer 

0.1 

LST_Day_1km 
Day Land 
Surface 

Temperature 
Kelvin 

16-bit 
unsigned 
integer 

0.02 

LST_Night_1k
m 

Night Land 
Surface 

Temperature 
Kelvin 

16-bit 
unsigned 
integer 

0.02 

Night_view_ti
me 

Local solar 
time of night 
observation 

Hours 
8-bit 

unsigned 
integer 

0.1 

QC_Day 
Daytime LST 

Quality 
Indicators 

Bit Field 
8-bit 

unsigned 
integer 

Ν/Α 

QC_Night 
Nighttime 

LST Quality 
Indicators 

Bit Field 
8-bit 

unsigned 
integer 

Ν/Α 

 
 
ECOSTRESS LST 

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Land 
Surface Temperature and Emissivity Level 2 product, ECO2LSTE, Version 1, provides global LST and 
emissivity measurements in a spatial resolution of 70m. The layers of the ECO2LSTE data product to 
be used within AFRI4Cast as well as their features are presented on Table 3.    

Regarding the ECOSTRESS LST acquisition time, a data product view time layer is not available. Thus, 
it was extracted from the product’s filename assuming that for a small area the acquisition time is 
constant. ECOSTRESS LST acquisition time is given in hour units in UTC Greenwich time zone.  

For example: “ECO2LSTE.001_SDS_LST_doy2023273195732_aid0001.tif” filename indicates that 
the image is acquired on the 273th day of 2023 at 19:57:32 UTC Greenwich time.  

For more information regarding the frequency of ECOSTRESS LST acquisitions, please refer to the 
Chapter “3.4. Τhermal Images Acquisition” of this document. 

 
Table 3. Layers/Variables of the ECOSTRESS ECO2LSTE.001 data product and their features. 

Product Version Layer Layer 
Descripti Units Data 

Type 
Scale 

Factor 
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on 

ECO2LSTE 001 

SDS_LST 
Land 

Surface 
Temperatur

e 
Kelvin 

16-bit 
unsigned 
integer 

0.02 

SDS_QC 
Quality 

Control for 
LST and 

emissivity 
N/A 

16-bit 
unsigned 
integer 

N/A 

 
Sentinel-3 SLSTR L2 LST 

Sentinel-3 SLSTR Level-2 LST Non-Time Critical (NTC) product provides daily gridded land surface 
parameters at a spatial resolution of 1 km. Regarding Sentinel-3 SLSTR Level-2 LST acquisition time, a 
view time layer is not available. Therefore, the acquisition time is extracted from the product’s filename 
making the assumption that the acquisition time is constant in a small area. Sentinel-3 SLSTR L2 LST 
acquisition time is provided in hour units in UTC Greenwich time zone. 

For example the file name: 
“S3B_SL_2_LST____20230125T072349_20230125T072649_20230126T001918_0179_075_220_
2880_PS2_O_NT_004.SEN3” 
indicates that the sensing start time is at 07:23:49 and the sensing end time is at 07:26:49 UTC 
Greenwich time. 

For more information regarding the frequency of Sentinel-3 SLSTR Level-2 LST acquisitions, please 
refer to the Chapter “3.4. Τhermal Images Acquisition” below. 

 
ERA5-Land REA Skin Temperature  

ERA5-Land provides information of land variables. It is composed of a detailed record from 1950, with 
a temporal resolution of 1 hour and a spatial resolution of 9km. ERA5-Land is not a remote sensing 
dataset, but a reanalysis (REA) dataset. Reanalysis combines model data with global observations to 
create a globally consistent dataset. Reanalysis produces data that cover several decades in the past, 
thus giving a precise description of the climate in the past.  

Within AFRI4Cast, the Skin temperature variable was utilized, which depicts the temperature of the 
surface of the Earth in kelvin degrees. The skin temperature is the theoretical temperature needed to 
maintain the surface energy balance. It depicts the temperature of the uppermost surface layer, which 
has no heat capacity and thus, it responds instantly to variations in surface fluxes.   

 
While working with the above-mentioned data products, some peculiarities were observed: 
 

● Acquisition time of images:  The time of images acquisition is given in different measurement 
time scales among the thermal data products. Specifically, MODIS Terra/ Aqua Day/Night LST 
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acquisition time is given in local solar time, which is the time based on the sun’s position in the 
sky in relation to a specific location on the ground. In contrast, the acquisition time of 
ECOSTRESS LST and Sentinel-3 SLSTR L2 LST products is provided in UTC Greenwich time 
zone. The models that are developed within AFRI4Cast require the acquisition time to be given 
in local solar time. Therefore, a conversion code between UTC Greenwich time zone and local 
solar time had to be created.  

 
● Quality of images: The qualitative assessment of the thermal data products can’t be conducted 

through photo interpretation since no specific spectral targets are visible, as it is in the case of 
multispectral and SAR images. In particular, the quality estimation of their geometric accuracy 
relies on the accuracy of the algorithms that carry out the reprojection, the co-registration and 
the resampling processes. Moreover, the qualitative assessment of their radiometry is based on 
the corresponding quality layers provided by each thermal data product. These quality layers 
encode in bits a set of quality criteria concerning the cloud coverage probability, the LST 
measurement uncertainty etc. Based on these layers and the defined methodology (Chapter 3.5. 
of this document), the quality mask of each thermal data product is derived, which is further 
utilized for the value masking of each product, i.e. the rejection of low-quality pixels.  

 
● Data scaling: Thermal data products present a specific radiometric accuracy deriving from the 

corresponding sensor. In the case of the thermal data products that are used within AFRI4Cast, 
their radiometric accuracy is maintained through the use of the UInt16 as their data type. This 
means that their size is reduced but without information loss. During the data conversion from 
raw values to scaled integers (data scaling) there is a specific radiometric accuracy, which should 
be preserved during the multiple data conversions that take place in order to perform lossless 
conversions and support the functionality of the developed algorithms and models through the 
maintenance of data accuracy.  Therefore, linear conversion equations are adopted in order to 
convert the LST data from UInt16 data type to Float32 data type based on the scaling factors 
that are provided for each thermal data product (Table 2. & Table 3.).   

 

● ERA5-Land REA:  Diurnal Temperature Cycle (DTC) equation modeling presented the 
peculiarity that the result of the curve fitting algorithm was prone to errors due to the special 
algebraic form of the equation. It was observed that the DTC equation modeling required good 
estimates of the parameters that are used as initial values. Thus, apart from the thermal radiance 
data, ERA5-Land REA Skin Temperature data were used as initial values for the parameters’ 
optimization in iterative models since they present the advantage of covering the daily 
temperature cycle with a frequency of 1 hour, so a conclusion about the daily minimum and 
maximum temperature is easily derived despite their coarse spatial resolution. Moreover, it is 
worth mentioning that ERA5-Land REA Skin Temperature variable measurements are close 
enough to the LST measurements provided by the thermal images. 
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2.3. Data Processing Pipelines 

 
The thermal data processing and fusion pipelines are depicted in Figure 1. 

 

 
Figure 1. Thermal data processing and fusion pipelines. 
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2.4. Thermal Images Acquisition 

 
Approach:  
In this chapter, the tools adopted within AFRI4Cast for thermal images acquisition are presented. The 
tools refer to the distinct APIs that are exploited in order to download the thermal data products or their 
metadata supporting the realization of the data processing pipelines. Aspects such as image availability, 
acquisition tools capabilities and the finding of appropriate quality data for the creation of image pairs 
to serve as input in the Spatiotemporal Thermal Data Fusion network (STTFN) are displayed as well. 

 
Acquisition Tools – AppEEARS API 

Within AFRI4Cast, AppEEARS API, an Application Programming Interface allowing users to interact 
with AppEEARS data archives, was exploited for the acquisition of ECOSTRESS and MODIS Terra/ 
Aqua LST data products via custom Python scripting.  

The Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) provides users with 
a convenient way to access and retrieve geospatial data from multiple Earth observation data sources. 
Through AppEEARS, users can subset geospatial satellite datasets with the provision of geographical, 
temporal and dataset layers’ parameters. There are two different kinds of sample requests: point 
samples with the use of geographic coordinates and area samples for spatial areas via vector polygons, 
with the latter being used within AFRI4Cast.  

 
The script parameters to be defined by the user include: 

● The desired directory for the downloaded ECOSTRESS or MODIS Terra/ Aqua LST data in .tif 
format 

● The product name & version in the format ProductName.Version  

● The desired layers for the chosen product to be requested 

● The directory in which the vector polygon file of the AOI is stored in a geojson format. 

● The preferred task name 

● The observation starts and end date in MM-DD-YYYY format 

 
Regarding the requested product layers, they are presented in Table 2 and Table 3.  
 
Auxiliary files are downloaded as well, such as: 

● <ProductName>-granule-list.txt: The list of the requested product layers in .tif format that are 
downloaded 

● <ProductName>-<ProductVersion>-QC-lookup.csv: Interpretation of the QC layer bit flag 
values that are found in the specific request 
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● <ProductName>-<ProductVersion>-QC-Statistics-QA.csv: Information about the pixels that 
belong in each bit flag value of the QC layer 

● <ProductName>-<ProductVersion>-Statistics.csv: Statistics about the downloaded product 
layers -Min, Max, Mean, Standard Deviation, Variance, Quartiles-. 

 
Acquisition Tools - EODAG 

In the context of AFRI4Cast, EODAG, the Earth Observation Data and Access Gateway, served as the 
exploration and retrieval tool for Copernicus Sentinel-3 SLSTR Level-2 LST data products via custom 
Python scripting.  

EODAG is both a command line tool and a Python package designed to ease the process of accessing 
and acquiring Earth observation data. EODAG facilitates the search, access and download of satellite 
imagery, while it offers a unified API for Earth observation data access independently of the data 
provider. Within AFRI4Cast, a custom developed Python script exploits the EODAG Python package 
and is configured to work with CreoDIAS, Copernicus Dataspace Ecosystem and ONDA DIAS API. 

The script parameters that have to be determined by the user are: 
● Workspace directory: The desired directory in which the data products will be downloaded 
● Extent: The WKT string of the AOI polygon 
● Start Date: Observation start Date in YYYY-MM-DD format 

● End Date: Observation end Date in YYYY-MM-DD format  

 
Acquisition Tools - Climate Data Store API 

Copernicus Climate Data Store (CDS) API is a service providing programmatic access to CDS data 
archive. Part of this archive is the ERA5-Land REA data product, which was utilized within AFRI4Cast’s 
pipelines. In particular, the product layer “Skin temperature”, which depicts the temperature of the 
surface of the Earth as already mentioned in Chapter 3.2., is the one requested by defining: 

● the AOI as a bounding polygon 
● the product type 

● the product variable  

● the time period (year, month, day) 

● the requested hours 

● the format (GRIB) 

 
Image Availability 

Following the delineation of thermal and climate images acquisition tools, the image availability was 
examined. The image availability aspect involved both the frequency of acquisitions and the quality of 
images. 
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Frequency of acquisitions: MODIS LST data products have a daily and diurnal temporal coverage, with 
their acquisition times to be at around 10:30 (MOD Day View Time) and 22:30 (MOD Night View Time) 
for Terra and at 13:30 (MYD Day View Time) and 1:30 (MYD Night View Time) for Aqua (local solar 
time). Sentinel-3 SLSTR L2 LST have a daily and diurnal temporal coverage as well, with their 
acquisition times to be at around 7:00 – 8:00 and 20:00 – 21:00 (UTC Greenwich time). On the other 
hand, ECOSTRESS data products do not present a consistent pattern on temporal coverage over the 
study sites either regarding the frequency of acquisitions or the acquisition times.  

Quality of images: ECOSTRESS and MODIS Terra/ Aqua LST image quality was examined with the 
most essential criterion to be the least possible cloud coverage in order to search and acquire images 
with the best possible quality for the creation of the test dataset (refer also to Chapter 1 & 3.6.). Image 
cloud coverage was examined in a manual way through the images metadata. 

 
Issues :  
As the zero or almost zero cloud coverage criterion was established (refer to Chapter 1.) in order to 
enhance the performance and the functionality of the SpatioTemporal Thermal Data Fusion Network, 
this had an effect on locating the available images that meet this criterion simultaneously. Consequently, 
the issue of finding available ECOSTRESS and MODIS Terra/ Aqua LST images that meet all the 
established quality criteria at the same time proved to be very important. 

● AppEEARS and EODAG APIs don’t provide a cloud coverage criterion when it comes to 
requesting and acquiring ECOSTRESS and MODIS Terra/ Aqua LST images. 

● The previous point led to examining the ECOSTRESS and MODIS Terra/ Aqua LST acquisitions’ 
metadata via manual inspection in order to locate the cloud-free images. However, the metadata 
of each acquisition concerns the whole image and not a subset of it, as it was our test area. Thus, 
the images had to be acquired, processed and cloud masked in order to draw a conclusion via 
visual inspection. This made the procedure time consuming and partially-automated.  

● The swath of ECOSTRESS LST images was not consistent among the ECOSTRESS LST 
acquisitions over the defined AOI. This led to the need of manual intervention in order to find 
out the ECOSTRESS and MODIS Terra/ Aqua LST acquisitions that spatially coincide.  

● Moreover, as the ECOSTRESS and MODIS Terra/ Aqua LST data products are provided in 
different time measurement scales, a time conversion had to take place in order to proceed.  

 

2.5. Thermal Images Preprocessing 

Challenge: 
The challenge encountered during the thermal images preprocessing included the close examination of 
each data product, its specifications and further on, the delineation of the necessary preprocessing steps 
for each data product. Part of the challenge that was faced was the development of the algorithm codes 
for the realization of the preprocessing pipelines in order to make the thermal images compliant with 
the requirements of the models. 
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Approach: 

The thermal images preprocessing steps included the quality-cloud masking based on the provided 
quality bit flags in order to eliminate pixels with illegitimate values and the data scaling based on the 
available scaling factors for each data product. Co-registration of the images is part of the preprocessing 
procedure as well.  

The outline of the thermal images pre-processing approach is described through the below mentioned 
steps: 

● Extraction of bit masks from the data products’ quality layers (Bitwise raster algebra) 

● Boolean union of the bit masks (Boolean raster algebra)  

● Data masking implementation  

● LST linear rescaling  

● Grid resampling (Nearest neighbor method)  

 
Methodology: 
 
MODIS Terra/ Aqua LST and View Time 

MODIS Terra/ Aqua LST and View Time layers acquired from AppEEARS API are already clipped to 
the extent of the defined AOI. Thus, solely a code for their cloud masking has to be developed.  

A custom Python code for the cloud masking and the data scaling of MODIS Terra/ Aqua Day/ Night 
LST and View Time layers was developed. The cloud masking relied on the QA bit flags provided through 
the QC layers (Table 4.) that accompany each MODIS Terra/ Aqua Day/ Night LST data product and a 
bitwise extraction approach based on the decimal equal of the binary representation (key values) for 
each bit pair. The data scaling was based on the scaling factors that apply to each data product layer 
(Table 2.). Lastly, the spatial resampling to the ECOSTRESS LST grid system was conducted via the 
nearest neighbor method. 

 
Table 4. The QA bit flags and their key values for MOD11A1.061 and MYD11A1.061 QC layers (Source: 

https://lpdaac.usgs.gov/documents/715/MOD11_User_Guide_V61.pdf). 

Bit-
No. Parameter Interpretation 

1 & 0 Mandatory QA flags 

00=LST produced, good quality, not necessary to examine more detailed 
QA 

 

01=LST produced, other quality, recommend examination of more 
detailed QA 

10=LST not produced due to cloud effects 
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11=LST not produced primarily due to reasons other than cloud 

3 & 2 Data Quality flag 

00=good data quality 

01=other quality data 

10=TBD 

11=TBD 

5 & 4 Emissivity Error flag 

00=average emissivity error <= 0.01 

01=average emissivity error <= 0.02 

10=average emissivity error <= 0.04 

11=average emissivity error > 0.04 

7 & 6 LST Error flag 

00=average LST error <= 1K 

01=average LST error <= 2K 

10=average LST error <= 3K 

11=average LST error > 3K 

 
The preprocessing steps for MODIS Terra/ Aqua Day/ Night LST and View Time layers’ cloud masking, 
data scaling and spatial resampling are: 

● Read the MODIS Terra/ Aqua Day/ Night QC and LST or View Time layers 

● Extract specific bits from a value of the QC layer - Creation of bitwise extraction function 

● Perform the bitwise extraction & create the bit masks based on the bit pairs and their key values: 

Bits 1 & 0: Mandatory QA mask  
Bits 3 & 2: Data Quality mask  
Bits 5 & 4: Emissivity Error mask  
Bits 7 & 6: LST Error mask  
 

In order to conduct a proper cloud masking, all values bigger than the binary 10 in the bit pair 1 & 0 
should be excluded: 

● Combine the individual bit masks in a single mask  

● Apply the mask to the LST or View Time layer 
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● Scaling: Multiply all the raster values by their scaling factor, i.e., 0.02 for LST and 0.1 for View 
Time layer 

● Set the no data value of the masked layer 

● Set the output file path 

● Prepare the metadata for the masked raster file 

● Write the masked and scaled array on a .tif raster file in Float32 data type 

● Spatial resampling of the masked MODIS LST layers to the ECOSTRESS LST grid system 
following the nearest neighbor method as the reflectance values should be retained.  

 
ECOSTRESS LST 

Following the same approach that was adopted for MODIS LST and View Time layers’ quality masking, 
a custom Python code for the cloud masking and the data scaling of ECOSTRESS LST layers was 
developed as well, as ECOSTRESS LST data products are downloaded already clipped from AppEEARS 
API. 

The cloud masking was based on the QA bit flags provided through the QC layers (Table 5.) that 
accompany the ECO2LSTE.001 data product and a bitwise extraction approach that relied on the 
decimal equal of the binary representation (key values) for each bit pair. The data scaling was based on 
the scaling factor that applies to the LST product layer (Table 3.). 

 
Table 5. The QA bit flags and their key values for ECO2LSTE.001 QC layers (Source: 

https://lpdaac.usgs.gov/documents/423/ECO2_User_Guide_V1.pdf). 

Bit-
No. Parameter Interpretation 

1 & 0 Mandatory QA flags 

00 = Pixel produced, best quality 

01 = Pixel produced, nominal quality. Either one or more of the following 
conditions are met: 

1. Emissivity in both bands 4 and 5 < 0.95, i.e. possible cloud 
contamination 

2. Low transmissivity due to high water vapor loading (<0.4), check PWV 
values and error estimates 

3. Pixel falls on missing scan line in bands 1&5, and filled using spatial 
neural net. Check error estimates. Recommend more detailed analysis of 

other QC information 

10 = Pixel produced, but cloud detected 
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11 = Pixel not produced due to missing/bad data, or TES divergence, user 
should check data quality flag bits. 

3 & 2 Data Quality flag 

00 = Good quality L1B data 

01 = Missing stripe pixel in bands 1 and 5 

10 = not set 

11 = Missing/bad L1B data 

5 & 4 Cloud/Ocean flag Not set. Please check ECOSTRESS GEO and CLOUD products for this 
information. 

7 & 6 Iterations 

00 = Slow convergence 

01 = Nominal 

10 = Nominal 

11 = Fast 

9 & 8 Atmospheric Opacity 

00 = >=3 (Warm, humid air; or cold land) 

01 = 0.2 - 0.3 (Nominal value) 

10 = 0.1 - 0.2 (Nominal value) 

11 = <0.1 (Dry, or high altitude pixel) 

11 & 10 MMD 

00 = > 0.15 (Most silicate rocks) 

01 = 0.1 - 0.15 (Rocks, sand, some soils) 

10 = 0.03 - 0.1 (Mostly soils, mixed pixel) 

11 = <0.03 (Vegetation, snow, water, ice) 

13 & 12 Emissivity accuracy 
(Average of all bands) 

00 = >0.02 (Poor performance) 

01 = 0.015 - 0.02 (Marginal performance) 

10 = 0.01 - 0.015 (Good performance) 

11 = <0.01 (Excellent performance) 
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15 & 14 LST accuracy 

00 = >2 K (Poor performance) 

01 = 1.5 - 2 K (Marginal performance) 

10 = 1 - 1.5 K (Good performance) 

11 = <1 K (Excellent performance) 

 
 
The preprocessing steps for ECO2LSTE.001 cloud masking and scaling are: 

● Read the ECOSTRESS QC and LST layers  

● Extract specific bits from a value of the QC layer - Creation of bitwise extraction function 

● Perform the bitwise extraction & create the bit masks based on the bit pairs and their key values 
(Table 5.) 

 
Bits 1 & 0: Mandatory QA mask 
Bits 3 & 2: Data quality mask 
Bits 5 & 4: Cloud/Ocean mask 
Bits 7 & 6: Iteration mask 
Bits 9 & 8: Atmospheric opacity mask 
Bits 11 & 10:  MMD mask 
Bits 13 & 12: Emissivity accuracy mask 
Bits 15 & 14: LST accuracy mask 

 
In order to conduct a proper cloud masking, all values different than 0 in the Bit pair 1 & 0 should be 
excluded. 

● Combine the individual bit masks in a single mask  

● Apply the mask to the LST layer 

● Scaling: Multiply all the LST raster values by their scaling factor, i.e., 0.02 

● Set the no data value of the masked layer 

● Set the output file path 

● Prepare the metadata for the masked raster file 

● Generate the binary mask 

● Set the output file path for the binary mask 

● Write the masked and scaled LST array on a .tif raster file in Float32 data type 
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● Write the binary mask on a raster .tif file in Uint8 data type.  

 
Despite the cloud masking, some low temperatures were noticed in the masked LST raster layer in some 
cases. These temperatures are probably associated with clouds and cloud shadows. Out of this it was 
inferred that using the Bit pair 1 & 0 may not be enough for a proper cloud masking. Therefore, the 
combined use of other key values in additional bit pairs should be considered as well. 

 
Sentinel-3 SLSTR L2 LST 

In opposition to the data products acquired from AppEEARS API which are provided already clipped to 
the extent of the defined AOI, Copernicus Sentinel-3 SLSTR Level-2 LST data products have to be 
processed from the beginning by firstly clipping the data and process them in an appropriate way 
afterwards. Therefore, an ESA SNAP Processing Graph was developed in order to implement the data 
clipping, the reprojection and the cloud masking of the data.  

The cloud masking was performed by exploiting the bit 14 (summary_cloud) of the confidence_in.nc 
layer that accompanies the Sentinel-3 SLSTR L2 LST data product (Table 6.). It is worth mentioning 
that a data scaling wasn’t applied in this case, in contrast to MODIS and ECOSTRESS LST data products, 
as the software that we worked on already applies the scaling factor to the LST values during their 
import. Moreover, depending on the extent of the study area, there is the chance that it intersects with 
two or more Sentinel-3 grid tiles. In this case, a mosaicking process of the distinct Sentinel-3 LST 
masked images took place. At last, as masked Sentinel-3 LST images were utilized for masked MODIS 
LST images validation purposes, they were resampled to the MODIS LST grid system. In this case, the 
Sentinel-3 LST image constituted the target raster layer and the MODIS LST layer played the role of the 
reference grid layer.   

 
Table 6. confidence_in.nc layer word definitions and masks for each bit flag (Source: Product Data 

Format Specification – SLSTR Level 2 Land Products). 

Bit Text Code Description 

0 coastline coastline in field of view 

1 ocean ocean in field of view 

2 tidal tidal zone in field of view 

3 land land in field of view 

4 inland_water inland water in field of view 

5 unfilled unfilled pixel (1 if this pixel is never tested or 
filled) 
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6 - (spare) 

7 - (spare) 

8 cosmetic cosmetic fill pixel 

9 duplicate pixel has a duplicate 

10 day pxel in daylight 

11 twillight pixel in twilight 

12 sun glint sun glint in pixel 

13 snow snow 

14 summary_cloud summary cloud test 

15 summary_point
ing summary pointing 

 
 
The preprocessing steps for Sentinel-3 SLSTR L2 LST are: 

● Subset: Spatial /Spectral subset of input image. Subset polygon boundaries given by user in 
WKT string  

● Reproject  

● Quality Masking based on the confidence_in metadata layer 

● Write Output in .tif format in Float32 data type 

● Mosaicking of the different Sentinel-3 LST masked images 

● Spatial resampling of the masked and mosaicked Sentinel-3 LST image to the MODIS LST grid 
system with the nearest neighbor method, as the reflectance values should be maintained 

 
ERA5-Land REA Skin Temperature 

In order to prepare the ERA5-Land REA data for further use in the Diurnal Temperature Cycle 
modeling, some important preprocessing steps were followed. These steps included the AOI definition 
and the downloading of the data from the Copernicus Climate Data Store (CDS) as well as the retrieval 
of the Skin Temperature variable. An important step was the format conversion from GRIB to netCDF 
in order for the data to be easy for use in the next preprocessing steps. GRIB (GRIdded Binary, also 
known as General Regularly-distributed Information in Binary form) is usually used as a condensed 
data format in meteorology for storing historical and forecast weather data and GRIB files are 
collections of self-contained records of 2D data. After that, processes such as linear interpolation 
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between the timesteps, calculation of key statistics and conversion between the different measurement 
time scales were performed. 

 
The preprocessing steps of the ERA5 - Land REA data product, Skin temperature layer include: 

● Download ERA5-Land Reanalysis data from CDS 

● Define Area of Interest -> Get WKT ->  <ymax>,<xmin>,<ymin>,<xmax> 

● For the DTC study, download two consecutive days of data 

● Retrieve Hourly data of Skin Temperature 

● Inspect GRIB/GRIdded Binary file and translate format to netCDF. Create a relative time axis. 

● Concatenate 2 days of data, to capture the full DTC 

● Perform linear interpolation between timesteps 

● Calculate Statistics, from which T Maximum and T Minimum layers of the DTC are computed  

● Calculate Argmax of Temperature (tm), which is the actual time where T is maximum 

● Time values in ERA5 are Greenwich UTC - tm converted to local solar time 

 

Issues and Next Steps: 
Issues: 

● In some cases of ECOSTRESS LST images with cloud coverage presence, low LST values were 
observed in the masked LST raster layer despite the cloud masking process. Clouds and cloud 
shadows are probably connected to these values. 

● Concerns regarding the effectiveness of the ECOSTRESS masking procedure were raised, as it 
seems that there are situations where the current masking technique, i.e., solely the use of Bit 
pair 1 & 0, fails to omit cloud pixels from the ECOSTRESS LST images. 

 
Next Steps: 
As the above issue is considered important with regard to the implementation of the rest procedures, 
the following next steps could take place: 

● Thorough evaluation of the ECOSTRESS masking process in order to Identify flaws and 
weaknesses in the current masking algorithm. 

● Implementation of modifications or fine-tuning of the masking parameters, i.e., the QC bit pairs 
and their key values, in order to improve the overall performance of the ECOSTRESS LST 
masking process. In particular, the use of different key values in additional bit pairs in 
combination with the key value of the Bit pair 1 & 0 will be considered.  

● Validation of the updated ECOSTRESS LST masking procedure to ensure its efficacy in omitting 
cloud pixels accurately. 
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2.5.1. Thermal Images Acquisition/Preprocessing  - Update iteration 

 
Reviewing the results obtained during the development of tools and pipelines for the acquisition and 
processing of ECOSTRESS thermal imagery revealed issues related to the procedure of quality masking 
of these data which makes them an Analysis Ready Dataset.  The approach taken in the first place was 
through the creation of a mask from the QA bit flags of the relevant layer. However, as is evident from 
the relevant table above (table 5), the use of the elements in the bit pair 1 & 0 is not sufficient to extract 
the cloudy pixels. There is a specialized bit pair in positions 4 & 5 related to the Cloud/Ocean flags but 
it is inactive in the Level 1 products used. This presumably happens to be the reason why no automatic 
cloud masking is performed by the Appears API.  The following image (Figure XXX1) shows the 
acquisition of an ECOSTRESS L1 image dated on 26/07/2022 and at 10 : 48 UTC time. From the color 
scale of the map legend, as well as from the associated  histogram of  pixel values (Figure XXX2) it is 
obvious that , on a fairly warm day, some pixels with temperature values in the range of [0,10] degrees 
Celsius are present, which is unrealistic . Due to their characteristic shape and distribution it is obvious 
that these patterns represent clouds that were not masked during the application of QC extraction.  
 

 
 

Figure XXX1. ECOSTRESS LST Level 1 image dated on 26/07/2022 and at 10 : 48 UTC time with 
cloudy pixels not properly masked. 
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Figure XXX2. Pixel value Histogram of ECOSTRESS LST Level 1 image dated on 26/07/2022 and at 
10 : 48 UTC time with cloudy pixels (noted in red frame) not properly masked. 

 
 
Regardless of the effect cloudy pixels have on the DTC Fitting and Spatiotemporal Thermal Fusion 
procedures and processes, it was considered appropriate to address this issue by improving the data 
pipeline for the ECOSTRESS LST images for their generic use .  The issue resolution turned out to be 
quite simple, as the product ECO_L2T_LSTE v002 was finally decided upon. 
 
The ECOSTRESS Tiled Land Surface Temperature and Emissivity Instantaneous Level 2 Global 70 m 
(ECO_L2T_LSTE) Version 2 data product provides atmospherically corrected land surface temperature 
and emissivity (LST & E) values derived from five thermal infrared (TIR) bands. The ECO_L2T_LSTE 
data product was derived using a physics-based Temperature and Emissivity Separation (TES) 
algorithm. This tiled data product is subset from the ECO_L2G_LSTE data product using a modified 
version of the Military Grid Reference System (MGRS) which divides Universal Transverse Mercator 
(UTM) zones into square tiles that are 109.8 km by 109.8 km with a 70 meter (m) spatial resolution. The 
ECO_L2T_LSTE Version 2 data product is provided in Cloud Optimized GeoTIFF (COG) format, and 
each band is distributed as a separate COG. This product contains seven layers including LST, LST error, 
wideband emissivity, quality flags, height, and cloud and water masks.  
 
Based on the Cloud Mask layer provided by the ECO_L2T_LST.002 product , masking on LST images 
is enabled, which is what the Appears API does by default.  For that basic type of preprocessing 
performed there, the Cloud Mask layer is used which is given as an 8-bit unsigned integer with boolean 
values, denoting 0 as Clear and 1 as Cloudy.  The following figure (Figure XXX3) illustrates the same 
acquisition, with properly masked cloud pixels. A "zoomed in" view of the image reveals pixels with 
lower LST values relative to their nearest neighbors, which are presumed to be cloudy but have not been 
labeled as such by the mask. The cloud mask is plotted in color black. The distribution of those pixels 
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around the perimeter of the mask, and not in a particular direction with respect to orientation, suggests 
that they are not cloud shadows , but rather misclassified cloud pixels due to some kind of ambiguity 
that exists around the threshold value at which the cloud mask discretization is performed. 
 

 
 

Figure XXX3. ECOSTRESS LST Level 2 image dated on 26/07/2022 and at 10 : 48 UTC properly 
masked from clouds. In detail : Cases of remnant cloudy pixels 

 
It should be noted that all users of ECOSTRESS LST Level 2 products (ECO_L2T_LSTE, 
ECO_L2_LSTE, ECO_L2G_LSTE) should be aware that the cloud mask information previously 
available in the Quality Control (QC) layer in v001, is not available in the v002 QC layer. Instead, users 
should be using the ‘cloud_mask’ layer in the L2 LSTE product, or the cloud information in the standard 
cloud mask products (ECO_L2_CLOUD, ECO_L2T_CLOUD, ECO_L2G_CLOUD) to assess if a pixel is 
clear or cloudy. 
 
To clarify the reasons which bring out this ambiguity in Cloud Masking, an analysis of the Quality 
Control for LST and emissivity layer values, which appear to occur in these marginal regions of the 
Cloud Mask, was performed. Cases of interest were thus identified in terms of Mandatory QA mask bits 
(0 & 1) and LST accuracy mask bits (14 & 15). Regarding the former, the general comment states that 
Pixel produced by the applied physics-based Temperature and Emissivity Separation algorithm. Certain 
conditions are met that may degrade the LST accuracy. Furthermore caution should be taken since 
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either one of the following algorithmic conditions are met, and more detailed analysis of other QC bits 
is recommended: 
● The retrieved emissivity in both longwave bands 4 (10.6 micron) and 5 (12 micron) is < 0.95 

indicating possible cloud contamination. 
● The pixel falls on a missing scan line in bands 1 and 5, in which the radiance was filled using a 

spatial neural net technique. The user should check error estimates for this pixel to see if they 
fall within tolerable bounds. 

● The pixel had transmissivity less than 0.4 indicating either possible cloud contamination or high 
humidity, which would result in higher uncertainty in the LST retrieval. The user is encouraged 
to check error estimates before using this pixel for science analysis. 

 
With respect to the LST accuracy mask, there has been in all pixels the alert of “marginal LST retrieval 
performance” with 1.5 - 2 Kelvin degrees error. In conclusion, for the cases of using ECOSTRESS LST 
data for agricultural applications, such as for example, Growing Degree Days or Crop 
Evapotranspiration computations, the application of Cloud Masking in the ECO_L2T_LSTE.002 (L2) 
product is recommended to avoid contamination with unacceptable pixels when calculating the average 
values per plot. To further discard the pixels at the mask margins, it is recommended to apply  a Dilation 
Morphological filter to the Cloud Mask layer before the actual masking. For more specific cases such as 
the fitting of a Diurnal Temperature Cycle model to Thermal Image data or the Spatiotemporal Fusion 
of ECOSTRESS with MODIS LST images, the issues of Cloudy pixels are discussed in the relevant 
chapters that follow. 
 
 

3.6. Creation of Test Dataset 

The creation of a complete dataset for testing the Spatiotemporal Thermal Data Fusion Network 
(STTFN) involved the request and acquisition of three high/low spatial resolution image pairs 
(ECOSTRESS/MODIS) based οn the established criteria (refer to Chapter 1. above) for example, the 
least possible cloud coverage. 

 
Preliminary steps 

Selection of a specific AOI in Kenya with 100 x 100 km size that belongs to a chosen ECOSTRESS swath. 
The data availability investigation was carried out for the whole time series of years 2022 and 2023. 

 
Data Collection and Filtering 

● ECOSTRESS: The investigation was firstly based on the availability of ECOSTRESS LST images 
for the defined AOI and years. By accessing the metadata of ECOSTRESS LST images, the initial 
stage involved filtering and selecting dates with cloud-free images in which the swath covers the 
defined AOI as well in order to ensure high-quality ECOSTRESS LST data (Table 7 & Table 8).  

● MODIS LST: MODIS Terra and Aqua acquisitions were downloaded and examined closely for 
the candidate ECOSTRESS cloud-free dates in order for their quality to be assessed as well 
(Table 7 & Table 8). 
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● Temporal normalization: A crucial step was the consideration of the acquisition times of both 
ECOSTRESS and MODIS Terra/ Aqua LST images for the candidate dates. Selection criterion 
was established to identify images where the acquisition times of both ECOSTRESS and MODIS 
LST images coincided. ECOSTRESS time values, that are originally in Greenwich UTC time, 
were converted to local solar time. 

 
Dataset Selection 

● Optimal Date Selection: Based on the established criteria of cloud-free conditions in 
ECOSTRESS images and at least one corresponding cloud or semi-cloud -free MODIS Terra/ 
Aqua LST image at matching acquisition times on the same date, a subset of suitable dates was 
chosen. 

For the year 2022, the dates in which ECOSTRESS LST acquisitions met the low cloud-coverage and 
swath coverage over the selected AOI criteria are presented in Table 7 on the column “Date”. The 
acquisition time of each image in its original time measurement scale, i.e, UTC Greenwich time, and 
their acquisition time converted to local solar time is given as well. For each selected date, the quality 
of MODIS Terra/ Aqua Day/ Night LST acquisitions was also evaluated. It was noticed that the 
ECOSTRESS LST acquisition time coincided mostly with the one of the MODIS Aqua (MYD) Day 
acquisition. In the cases when time coincidence between the ECOSTRESS and the MODIS LST 
acquisitions was observed (marked with orange color) and as long as the corresponding MODIS 
acquisition was found to be cloud-free at the same time, that date was considered a candidate one for 
the creation of a high/ low resolution image pair.  

Nevertheless, it was observed that cloud-free MODIS LST images were mostly provided by MODIS 
Terra (MOD) Night acquisitions for all the corresponding ECOSTRESS LST dates. However, as their 
acquisition times were significantly different than the ECOSTRESS ones, the need of temporal 
normalization of the low spatial resolution LST data to the time of the high spatial resolution data arised. 
In case it would have been decided to proceed with the year 2022 and based on the requirements placed 
for the temporal normalization methodology, the most suitable date would be the 27/01/2022 (marked 
with green color) as all of the four acquisitions for that date (ECOSTRESS and MODIS Terra/ Aqua 
Day/ Night LST) presented an optimal quality. 

 
Table 7.  The dates in which ECOSTRESS and MODIS LST acquisitions met the low cloud-coverage 

and swath coverage over the selected AOI criteria for the year 2022. 

ECOSTRESS LST MODIS TERRA LST MODIS AQUA LST 

Date 
D
O
Y 

UTC 
Green
wich 

Time 

Loca
l 

Solar 
Time 

MOD 
Day 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

MOD 
Nigh

t 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

MYD 
Day 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

MYD 
Nigh

t 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

27/1/202 27 09:59 12.11 √ 10.1 √ 22.5 √ 13.2 √ 1.5 
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2 :57 

6/3/202
2 65 18:50

:43 20.96 
X  

(no 
data) 

X √ 21.8 √ 14.2 
X  

(no 
data) 

X 

11/2/202
2 70 04:50

:37 6.98 √ 9.8 √ 22.2 
X  

(no 
data) 

X √ 1.2 

10/5/202
2 

13
0 

17:16:
21 19.65 √ 10.1 √ 22.5 √ 13.2 √ 1.5 

26/7/202
2 

20
7 

10:48
:50 13.02 

X  
(no 

data) 
X √ 22 √ 14.1 

X  
(no 

data) 
X 

22/8/20
22 

23
4 

11:49:
34 14.08 √ 10.9 √ 21.6 √ 13.6 

X  
(no 

data) 
X 

 
Regarding the image availability of cloud or partially cloud-free images as well as the ones of full swath 
coverage over the defined AOI for the time series of 2023, the availability of ECOSTRESS images was 
significantly higher than the one of 2022 (Table 8.). The quality of MODIS Terra/ Aqua Day/ Night LST 
acquisitions for the dates of ECOSTRESS LST images availability was examined in order to create the 
three high/low spatial resolution image pairs. It was observed that the dates when the ECOSTRESS 
acquisition is cloud-free but also at least one MODIS Terra/ Aqua Day/ Night acquisition is also cloud-
free and its acquisition time coincides with the one of ECOSTRESS are the 17/01/2023, 25/01/2023 
and 5/12/2023. Consequently, the high/low spatial resolution image pairs for the creation of a complete 
dataset for testing the Spatiotemporal Thermal Data Fusion Νetwork (STTFN) were formed for these 
dates: 

● 17/01/2023: ECOSTRESS LST - MODIS Aqua (MYD) Day  

● 25/01/2023: ECOSTRESS LST - MODIS Terra (MOD) Night  

● 5/12/2023: ECOSTRESS LST - MODIS Terra (MOD) Night  

 
Lastly, the date 25/01/2023 was chosen as the most suitable for the implementation of the temporal 
normalization methodology (refer to Chapter 3.7.) as all of the four acquisitions for that date 
(ECOSTRESS and MODIS Terra/ Aqua Day/ Night LST) presented the best quality in terms of cloud 
coverage. 

 
Table 8. The dates in which ECOSTRESS and MODIS LST acquisitions met the low cloud-coverage 

and swath coverage over the selected AOI criteria for the year 2023. 

ECOSTRESS LST MODIS TERRA LST MODIS AQUA LST 
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Date 
D
O
Y 

UTC 
Green
wich 

Time 

Loca
l 

Solar 
Time 

MOD 
Day 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

MOD 
Nigh

t 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

MYD 
Day 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

MYD 
Nigh

t 
Qual

ity 
Chec

k 

Loca
l 

Solar 
Time 

17/1/202
3 17 13:29:

59 15.56 
X  

(no 
data) 

X √ 21.7 √ 14/14.
1 √ 2.3/2.

4 

25/1/202
3 25 21:50:

44 23.96 √ 9.9 √ 22.3 √ 13.1/1
3.2 √ 1.5 

20/4/20
23 

11
0 

00:53
:59 3.23 √ 10.7/1

0.8 

X  
(no 

data) 
X √ 14.1 

X  
(no 

data) 
X 

21/5/202
3 

14
1 

00:19
:19 2.69 √ 10.6 

X  
(no 

data) 
X 

X  
(no 

data) 
X √ 1.3 

31/8/202
3 

24
3 

7:53:5
7 10.19 √ 9.7 √ 22/22

.1 √ 13.9 √ 2.2/2.
3 

4/9/202
3 

24
7 

06:16
:31 8.59 

X  
(no 

data) 
X √ 21.5 √ 13.4 √ 1.7/1.

8 

16/9/202
3 

25
9 

01:30
:34 3.9 

X  
(no 

data) 
X √ 21.5 √ 13.6 √ 1.9 

1/12/202
3 

33
5 

19:10:
15 21.67 

X  
(no 

data) 
X √ 22.3 √ 13.9/1

4 

X  
(no 

data) 
X 

5/12/202
3 

33
9 

17:32:
59 20.02 √ 9.4 √ 21.8 √ 13.4 √ 1.7/1.

8 

 
 
Image Preparation 
Both ECOSTRESS and MODIS Terra/ Aqua LST images were, lastly, preprocessed accordingly. 
Regarding the image preparation, please refer to Chapter 3.5. 

 

3.7. Diurnal Temperature Cycle (DTC) Modeling  

Challenge: 
In the procedure of retrieving thermal image data for the application of Spatiotemporal Data Fusion 
algorithms, it was found that ECOSTRESS LST images do not, as a rule, exhibit a fixed acquisition time, 
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but show a random repass pattern. There was some concern raised about their suitability as inputs to 
Deep Learning data fusion models. The main body of literature on which the STTFN component is based 
refers to operational LST data from Landsat 8 and MODIS satellites, which receive data almost 
simultaneously, whereas this is not the case for ECOSTRESS LST. It was considered as an important 
condition that the HR/LR image pairs were acquired at a sufficiently close time and therefore some 
computational method had to be applied for the temporal normalization of the Low Resolution LST data 
to the acquisition time of the High-Resolution data. 

 
Approach: 
As the temporal variation of the temperature during a diurnal cycle is not a linear function of time, all 
the more so because its parameters depend on particular geophysical features, it is not ideally accurate 
to derive LST values in a reliable way, by using simple data interpolation techniques such as General 
Linear Models or Splines. For this reason, it was decided to follow the approach of fitting the MODIS 
data to a Diurnal Temperature Cycle Model, extracting the parameters that optimize it, and then 
applying it to calculate LST at the time of ECOSTRESS data acquisition. As the need for the above 
approach arose during the data acquisition process, the methodology was not described in the related 
deliverable “D3 - State-of-the-art review report on the EO analysis methods and algorithms “and is 
therefore developed in more detail in this deliverable, in the upcoming chapter. 

 
Methodology: 
Diurnal Temperature Cycle Models have the potential to be used to obtain LST at an arbitrary time 
within the diurnal cycle, by interpolating LST derived from polar orbiting satellites to a diurnal cycle 
(Jin & Dickinson, 1999). By fitting a DTC model, a set of parameters which describe the thermal 
dynamics of the land surface are yielded. Once the parameters are determined, surface temperature at 
any time of a day is able to be predicted. Besides, DTC models are helpful for temporal normalization of 
remotely sensed LSTs (Jiang, 2007), which was the reason it was utilized in AFRI4Cast. 

As a basis, the physical DTC model GOT01 suggested by Göttsche & Olesen (2001) was utilized. This 
model uses a cosine and an exponential term to describe the effect of the sun and the decrease of surface 
temperature at night. The exponential term is chosen because it is typical for natural decay-processes, 
as described by Newton’s law of cooling. However, GOT01 describes the variation of LST with five 
parameters, which makes it less applicable to LST imagery at 2–4 times per day derived from polar 
orbiting satellite data, like MODIS. Four-parameter (FPD) modifications of DTC models can be applied 
to tandem polar orbiting satellite observations and have received special attention. Different 
approaches have been proposed to reduce the parameter number of DTC models to only four. Chang et 
al. (2019) evaluated 2 FPD modifications of the GOT01 model, which fixed a free parameter to a 
specified value, and more specifically the day to day change of Residual Temperature or the solar time, 
for which the free attenuation begins. In our current study the GOT01 - δT DTC modification was 
implemented, by fitting a Diurnal dataset of MODIS LST images over a defined area of interest. 

GOT01 DTC Model Formulation - Goettsche and Olesen (2001) 
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𝑇(𝑡) = &𝑇! + 𝑇" ⋅ 𝑐𝑜𝑠 ,
𝜋
𝜔 ⋅

(𝑡 − 𝑡#)0 , 𝑡

< 𝑡$	(𝑇! + 𝛿𝑇) + 5𝑇" ⋅ 𝑐𝑜𝑠 ,
𝜋
𝜔 ⋅

(𝑡$ − 𝑡#)0 − 𝛿𝑇6 ⋅ 𝑒𝑥𝑝 ,
−(𝑡 − 𝑡$)

𝑘 0	, 𝑡 ⩾ 𝑡$	<	

 

 
Figure 2. A schematic illustration of the diurnal temperature cycle (DTC) model (Wen, J. et al., 2022). 
 

Free Parameters: 

● T0: Residual Temperature, [Celsius, Kelvin] 

● Ta: Temperature Amplitude, [Celsius, Kelvin] 

● tm: argmax T(t), [solar time] 

● ts: time when free attenuation begins, [solar time]    

● δT: day to day change of Residual Temperature, [Celsius, Kelvin] 

Computed Parameters: 

● ω: half-period of oscillation of cosine 

𝜔(𝜑, 𝛿) =
2
15 ⋅ 𝑎𝑟𝑐𝑐𝑜𝑠C−𝑡𝑎𝑛

(𝜑) ⋅ 𝑡𝑎𝑛(𝛿)E	
 

● φ: geographic latitude 

● δ: solar declination as a function of DOY 

● DOY : Day of year 
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𝛿(𝐷𝑂𝑌) = 23.45 ⋅ 𝑠𝑖𝑛 ,
360
365 ⋅

(284 + 𝐷𝑂𝑌)0	

 

● k: attenuation constant 

𝑘 =
𝜔
𝜋 ⋅ P𝑎𝑟𝑐𝑡𝑎𝑛 ,

𝜋
𝜔 ⋅

(𝑡$ − 𝑡#)0 − Q
𝛿𝑇
𝑇"
⋅ 𝑎𝑟𝑐𝑠𝑖𝑛 ,

𝜋
𝜔 ⋅

(𝑡$ − 𝑡#)0RS	

 
 
GOT01 - δT DTC modification 
 
In order to provide a well posed problem to the curve fitting algorithm, a restriction of at most 4 free 
parameters, equal to the number of available MODIS LST images in the Diurnal Cycle, and 0 degrees of 
freedom had to be implied. As a result, the δΤ parameter was fixed and the model was evaluated for a 
range of δΤ values. 

 
Curve Fitting Algorithm 

The procedure of fitting MODIS LST data to the GOT01 DTC is a nonlinear least squares (NLS) problem 
for which the application of Levenberg-Marquardt (LM) algorithm was decided. LM, also known as the 
damped least-squares (DLS) method, is a numerical optimization algorithm that balances the 
robustness of Gauss-Newton method with the softer constraints that the Gradient Decent alternative 
implies on the optimization cost function. If the Hessian of the modeled function is undefined in the 
function’s root, then gradient descent could be applied on it, but not Newton’s method. LM contribution 
is the adoption of a non-negative damping factor λ, which is adjusted at each iteration step. If reduction 
of the squared error is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss–
Newton algorithm, whereas if an iteration gives insufficient reduction in the residual, it can be 
increased, giving a step closer to the gradient-descent direction. In principle, LM is even more robust 
than the Gauss-Newton approximation, which means that in many cases it finds a solution even if it 
starts very far off the final minimum. It converges faster than first-order methods. However, like other 
iterative optimization algorithms, the LM finds only a local minimum, which is not necessarily the global 
minimum. This particular fact was something observed during DTC fitting with MODIS data. Even 
more, the DTC formula brought a range of ts, tm values for which the arcsin function, and subsequently 
the DTC could not be defined in. For these two particular reasons: 

● Initial Values for DTC parameters were provided by ERA5 Reanalysis data, as the closest 
approximation of a proper initial guess for the algorithm, to avoid sticking in local minima of 
the error function. 

● A modification of the Levenberg - Marquardt algorithm, with support for lower and upper 
parameter bounds was preferred. 

 
Algorithm Evaluation 
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The standard procedure for evaluating the performance of a DTC fitting algorithm should entail the 
comparison of the result predicted by the model with the LST values obtained from an external dataset 
with higher accuracy. Usually, the data are derived from in situ ground truth measurements of upwelling 
and downwelling longwave radiation, measured by net radiometers mounted on Eddy Covariance Flux 
Tower stations. In the case of the Afri4Cast pilot studies no such data sources were found, especially in 
the areas where cloud free images were available. Therefore, alternatives had to be sought. 

The case of evaluation with ERA5 Reanalysis data has the advantage of evaluation in many time 
intervals of the DTC, but beyond that it is limited by the very low spatial resolution of the data in 
comparison to MODIS imagery. In such a case, the accuracy of the DTC should have been tested over 
large areas of temperature homogeneity. In addition, the Skin Temperature variable is not identical to 
LST and it would not be appropriate to compare their values without applying some transformation. 

Consequently, the evaluation with Sentinel 3 LST data from the Copernicus programme was chosen as 
the target alternative for the assessment. The DTC model prediction at the time of acquisition of the 
Sentinel 3 LST image was compared with the recorded value to derive the Validation RMS Error. Due 
to the fairly close acquisition time that the S3 and MODIS LST data had in the region, the Validation 
RMS Error was expected to be quite close to the model Calibration Residual for the acquisition times of 
the MOD LST Day and MYD LST Night images. Specifically, the Sentinel 3 LST data query yielded 2 
available images, with the first one at 9.77 and the night one at 22.4, in the solar time scale. However, 
during image processing, all the pixels in the night image were masked out due to cloud cover 
conditions. For this reason, the RMS Error of Validation could certainly be compared with the 
Calibration Fitted Residual of the morning MOD Day image. 

 
DTC Model Inputs 

LST Calibration Data: 

● MOD Day View Time 

● MOD LST Day  

● MYD Day View Time 

● MYD LST Day  

● MOD Night View Time 

● MOD LST Night  

● MYD Night View Time 

● MYD LST Night 

 
*It should be noted at this point, that the MODIS LST data and their corresponding View Time layers, 
have been value masked using the Diurnal Cloud Mask, which resulted as a union overlay of the 
individual binary masks. The DTC-δΤ model was tested for cloud free data at 100% of the AOI 
coverage. 
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Ancillary Raster Data Layers: 

● Land Cover 

● Latitude 

● Longitude 

● DOY 

 
Validation Raster Data Layers: 

● Sentinel 3 LST DAY View Time 

● Sentinel 3 LST DAY 

● Sentinel 3 LST NIGHT View Time 

● Sentinel 3 LST NIGHT 

 

Initial Values Raster Data Layers: 

● T0: T minimum 

● Ta: T maximum – T minimum 

● δT: Set by user  

● tm: Computed as argmax of T in preprocessing 

● ts: Starting time of free attenuation computed as sunset time -1 

 
DTC Pre-Fitting processing 

● Computation of local Sunrise /Sunset time 

● Computation of Daylight time (hs) - ω: DTC angular frequency 

● Computation of Attenuation Time ts=sunset time-1 

 
 
Setting of DTC Parameter Bounds 

During the computation of the DTC error loss function Jacobian, value domain constraints are posed 
for the ts, tm parameters, in order to provide a real number range of values. The upper and lower bounds 
for the parameters are given by the system: 

 

𝑡#(𝑈𝑝𝑝𝑒𝑟) =
𝜔
𝜋 + 𝑡$ < 𝑡# < 𝑡$ −

𝜔
𝜋 = 𝑡#(𝐿𝑜𝑤𝑒𝑟)	
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which has infinitely many solutions, thus tm bounds is a function of ts bounds. The ts bounds were 
decided relative to tss sunset time, by setting ts in [tss-2,tss] domain. Therefore:  

ts Lower Bound= tss-2 
ts Upper Bound=tss 
while: 
tm Lower Bound =ts Upper Bound – (ω/π) 
tm Upper Bound=ts Lower Bound + (ω/π) 
 
The acceptable value domain for the ts, tm parameters that produce non-infinity results is demonstrated 
on the graph that follows which represents the solution of the parameter inequality system (Figure 3.). 

 

 
Figure 3. A graphing linear inequality system solution for parameter bound setting of the ts and tm. 

 
DTC Model Outputs 

● Estimated Model parameters: T0, Ta, tm, ts, δΤ 

● Residuals: Res MODISt1, Res MODISt2, Res MODISt3, Res MODISt4 

● Residual Sum of Squares: RSS 

● Root Mean Square Error of Calibration: Calibration RMSE 

● Log Info Flags: termination of algorithm, convergence issues etc. 

● Niter: Number of iterations 
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● Fitting Bias: Residuals normality - Shapiro-Wilk normality test (p<0.05) 

● Root Mean Square Error of Validation with S3 LST: Validation RMSE 

 
 
Experimental Results: 
The experimental design for the development and evaluation of the DTC- δΤ model was determined by 
the availability of ECOSTRESS and MODIS LST data. The model was calibrated with 4 MODIS LST 
images of the DTC that occurred on 25 January of 2023 to predict a MODIS-DTC image at the 
ECOSTRESS acquisition time. As it is evident on the following table, the modeling of the DTC 
exponential decay was modeled with a past-midnight MYD LST image acquired on the 26th of January 
2023. 

 
Table 9. LST images and acquisition solar times of the experimental setting. 

DOY  ECOSTRE
SS 

MOD Day 
(TERRA) 

MYD Day 
(AQUA) 

MOD 
Night 

(TERRA) 

MYD 
Night 

(AQUA) 

25 
Local 
Solar 
Time 

23.96 9.9 13.1 22.3 25.5 
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Figure 4. Land Cover map of the Area Of Interest. 

 
The area coverage percentage of each land cover class in the area of interest is given on the following 
table, while the spatial distribution land cover map is presented on Figure 4.  

 
Table 10. Area coverage percentage land cover classes in the area of interest. 

Land Cover Class Area Coverage Percentage 

Barren 1.55 

Closed Forest Evergreen Broad Leaf 0.01 

Closed Forest Unknown 1.04 

Cropland 0.85 

Herbaceous Vegetation 64.09 

Herbaceous Wetland 0.31 

Open Forest Unknown 5.84 
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Shrubs 22.21 

Urban 0.05 

Regarding the fixed parameter δΤ, a grid search approach was applied throughout the model 
calibration. An assumption about a hidden relationship between land surface thermal inertia and the 
δΤ parameter, raised the need to investigate the response of DTC calibration errors with the variation 
of δΤ. For a given value, a different calibration error could be expected on the various land cover classes. 
Viewed from another perspective, a grid search on δΤ would tune the parameter to its optimal value for 
each land cover surface. As a result, DTC-δΤ was calibrated for a range of δΤ values [-16,8] with an 
increment of 0.5 Kelvin degrees. 

The experimental case study results are presented as partial zonal statistics of the 
Calibration/Validation RMSE, and the Calibration Residual at each MODIS LST instance, for all the 
involved Land Cover classes. The zonal analysis involved the calculation of maximum, minimum, Q1/Q3 
quantiles, average, and standard deviation metrics, over the whole image. Furthermore, in order to 
assess the model performance in a more general manner, a global average RMSE statistic is given for 
Calibration, as a goodness of fit metric, and Validation, as an external data evaluation. A DTC model 
performance summary is presented on the following Table 11.  

 
Table 11. DTC performance metrics summary. 

Land Cover 
Herbaceo

us 
Vegetati

on 

Herbaceo
us 

Wetlan
d 

Shrubs 

Open 
Forest 
Unkno

wn 
Urban Cropla

nd 

Closed 
Forest 
Unkno

wn 

Closed 
Forest 

Evergre
en 

Broad 
Leaf 

Barren 

max 
Calibration 

RMSE 
7.58 5.32 6.75 5.69 1.41 5.95 4.17 2.22 4.91 

q75 Calibration 
RMSE 4.18 4.26 3.84 3.86 1.25 3.59 2.82 2.02 3.80 

avg Calibration 
RMSE 3.53 3.85 3.12 3.11 1.16 2.96 2.17 1.82 3.25 

std Calibration 
RMSE 0.92 0.77 0.98 1.02 0.21 1.02 1.02 0.57 0.70 

q25 Calibration 
RMSE 2.86 3.50 2.36 2.48 1.13 2.22 1.56 1.62 3.00 

min Calibration 
RMSE 0.73 1.46 0.42 0.00 0.85 0.64 0.00 1.42 1.22 

avg Res 
MODISt1 6.55 7.38 5.78 5.83 2.25 5.50 2.55 2.45 4.48 
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avg Res 
MODISt2 -1.84 -1.71 -1.71 -1.51 -0.51 -1.40 -2.98 -2.67 -4.25 

avg Res 
MODISt3 0.60 0.75 0.46 0.45 -0.13 0.14 -0.09 0.14 -0.04 

avg Res 
MODISt4 0.44 0.52 0.18 0.37 0.19 0.38 -0.04 -0.05 0.89 

max Validation 
RMSE 19.26 18.30 18.55 17.63 4.58 16.88 14.14 NA 13.86 

q75 Validation 
RMSE 13.06 13.65 12.71 11.44 4.46 11.13 8.78 NA 10.39 

avg Validation 
RMSE 10.79 12.38 10.24 9.43 3.97 9.54 6.51 NA 9.19 

std Validation 
RMSE 2.77 2.57 2.99 2.92 0.58 2.77 3.72 NA 1.82 

q25 Validation 
RMSE 8.57 10.48 7.85 7.82 3.38 7.92 3.69 NA 7.65 

min Validation 
RMSE 2.61 7.93 2.20 0.25 3.36 3.21 0.27 NA 5.20 

avg Res 
MODISt2 -1.84 -1.71 -1.71 -1.51 -0.51 -1.40 -2.98 -2.67 -4.25 

avg Res 
MODISt3 0.60 0.75 0.46 0.45 -0.13 0.14 -0.09 0.14 -0.04 

 
The argument of minima for the Calibration RMS Error metric, in δΤ values, provided insight about the 
grid search tuning procedure, while the tuning/sensitivity analysis results are presented on the 
following table, for the most dominant land cover class of Herbaceous Vegetation and the great 
importance category of Croplands (Table 12). 

 
Table 12. Calibration RMSE argument of minima for the δΤ parameter. 

Land Cover 
Herbaceo

us 
Vegetati

on 

Herbaceo
us 

Wetlan
d 

Shrubs 

Open 
Forest 
Unkno

wn 
Urban Cropla

nd 

Closed 
Forest 
Unkno

wn 

Closed 
Forest 

Evergre
en 

Broad 
Leaf 

Barren 

δΤ 0.5 -1 -3 -8 -5 -6 -6.5 -4 -8.5 
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The distribution of the error trend for different δΤ values is represented on the screen plot figures that 
follow, where the land cover classes of major importance are selected. These representations are 
indicative of the model sensitivity for that parameter, underlying a trend towards negative values.   

 

 
Figure 5. δΤ Scree Plot for Calibration RMSE. Cropland and Herbaceous Vegetation land cover. 

 

 
Figure 6. δΤ Scree Plot for MOD Day Calibration Residual. Cropland and Herbaceous Vegetation land 

cover. 
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Figure 7. δΤ Scree Plot for MYD Day Calibration Residual. Cropland and Herbaceous Vegetation land 

cover. 
 

 
Figure 8. δΤ Scree Plot for MOD Night Calibration Residual. Cropland and Herbaceous Vegetation 

land cover. 

 
Figure 9. δΤ Scree Plot for MYD Night Calibration Residual. Cropland and Herbaceous Vegetation 

land cover. 
 
What was evident, at this point, is that the selection of an optimal δΤ, as the argument of minima for 
Calibration RMSE, guaranteed an overall good model fit through all 4 MODIS acquisition times. When 
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focusing, however, on the Night LST images, which also was the approximate time for the ECOSTRESS 
image, the selected δΤ provided the best fit to data, among all other values, with minimum residual 
error. 

 

 
Figure 10. Average Fitted DTC models for δΤ equal to -8 and -5 

 
By inspecting the average fitted DTC model plots (Figure 11), with the optimal δΤ values for Cropland 
and Herbaceous Vegetation respectively, inference can be drawn about under/overestimation qualities 
of the models. For both Land Cover classes, there was a clear underestimation on the MOD Day LST 
acquisition time, which is constant on all δΤ values. In a similar manner, on MYD Day time, the model 
somehow overestimated the LST values. Finally, on the MYD and MOD night times, the exponential 
decay part of the model fitted a lot better to the LST data. 

 
Regarding the model Validation results, RMS errors followed a similar trend, but with the absolute 
values however being a lot higher. 

 

 
Figure 11. δΤ Scree Plot for Validation RMSE. Cropland and Herbaceous Vegetation land cover. 
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As mentioned previously the validation was eventually performed with data from the daytime Sentinel 
3 LST acquisition. Given the close temporal coincidence of the MODIS and Sentinel 3 view times, and 
the underestimation observed in the model, a further emphasis was given in the comparison of the two 
LST datasets. It was found that the two images showed significant differences between them and that 
observation was not physically intuitive. 

 

 
Figure 12. Distribution of the observed offset between MOD Day and Sentinel 3 LST images. 

 
The MODIS image, although acquired a few minutes later than Sentinel 3, showed, according to the 
paired t test that was performed, values averaging -3.51 degrees Kelvin and the null hypothesis was 
rejected. In most of their distribution the differences in the values of the two images are negative, which 
is not expected, since one would expect, for a difference in acquisition time of only 8 minutes, the 
difference in LST values to be positive and much lower. Given the above remarks, and the inherent 
uncertainty of the LST values in the images (Shrestha, A. et al. 2018), usually quantified as measurement 
error, it finally appeared that the Validation method with an external dataset of a single Sentinel 3 LST 
image could not be reliable without taking into account the measurement errors of the images.  It may 
even be assumed that the very high values in the Validation RMSE reflect the already known 
underestimation of the model during the daytime hours, for the reason that if the average difference 
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between the two LST images, per land cover class, is added to the Residual Calibration Error of the MOD 
Day acquisition, then the values of the Fitting Calibration RMSE are closely approximated. 

The average RMSE metric for Calibration and Validation respectively, considering all the land cover 
classes of the AOI, provides an overall performance indicator for the DTC model, was calculated as a 
weighted mean of the partial summary metrics of Table 12 and it is given by the following values (kelvin 
degrees):  

● Calibration RMSE: 3.387 

● Validation RMSE: 10.5 

The mapped DTC prediction is a synthesis of the optimal DTC-δΤ predictions of each land cover class 
and it is presented on Figure 13. The provided map shows a visual evaluation of the DTC prediction, 
when compared between the ECOSTRESS LST image obtained on the target solar view time and the 
closest MODIS LST image obtained 1 hour 30’ earlier. All images are mapped with a common value 
range color symbology to enable a reliable comparison. 

A first conclusion that emerged is that the DTC Prediction image approximates well the values of the 
ECOSTRESS image, and in this respect, it is obviously significantly different from the values of the 
MODIS image. This means that at the pixel level, the simulation of the Diurnal Temperature Cycle 
achieves the temporal normalization, for which it was implemented, to a significant degree. However, 
image artifacts are still visible, which in the upper left part of the image are quite extensive. Because of 
their shape, it is suspected that in these blocks, the algorithm converged directly to the initial values 
given to it, and for this reason the shape of the artifacts resembles in block size the pixel size of the ERA 
5 data. It was finally observed that all 3 images maintain the same spatial pattern. 

Considering that in the case of the given experiment, the MODIS image is not temporally far from the 
acquisition of the ECOSTRESS image, different assumptions are made about the usefulness of the "DTC 
Fitting to MODIS LST data" process to the final task, which is SpatioTemporal Thermal Fusion, 
depending on the efficiency and the learning mode of the Deep Network. With the present data 
availability, however, it was not possible to examine this issue in depth for the reason that cases with 
target view time at different parts of the day need to be considered. The case studied was in any case 
favorable in the sense that the image acquisition times were close enough, and in a stage of the Diurnal 
Temperature Cycle during which temperature changes are rather gradual. 
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Figure 13. Evaluation of DTC prediction, as compared with MOD Night and ECOSTRESS LST 

images
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Issues and Next Steps: 
 
In conclusion, regarding the process of temporal normalization of MODIS LST thermal images, through 
their fitting to a DTC model, for their eventual use as training data in deep learning spatiotemporal 
fusion algorithms, the accuracy results were found to be within the acceptable framework defined by 
the relevant literature in terms of the parametrization and performance of curve fitting. However, an 
issue was found related to scene quality in the Sentinel 3 LST data used for independent validation and 
testing of the calibrated DTC model. 

In next steps an extended study could be carried out that includes in its experimental design images at 
different seasons of the year to determine the stability of DTC accuracy across seasonal change. It will 
also be important during this 2nd iteration to investigate the existence of higher quality Sentinel 3 LST 
thermal image acquisitions to perform a relevant independent validation. 

 
3.7.1. Diurnal Temperature Cycle (DTC) Modeling  - Update iteration 

 
The objective that was set in terms of the 2nd iteration for the current deliverable, was to perform a 
more extensive study and analysis on the results concerning the accuracy of the Diurnal Temperature 
Cycle (DTC) Modeling. In a new experimental design, a study area was selected at the Ahero site, with 
greater diversity in Land Use/Land Cover classes. Regarding the external validation with Sentinel 3 LST 
data, in order to avoid the errors that occurred in the 1st iteration, the selection of the AOI was 
determined by the criterion that it contained a single S3 LST image tile, while still the inherent 
uncertainty in the LST data used was determined by the Quality Metrics of the original S3 layers. The 
experimental design included the Calibration and Validation of DTC curve fitting models across 
different seasons of the year. Due to the geographical location, finding images with purely non-cloudy 
conditions throughout the day became impossible for all seasons of the year. Furthermore, since the 
analysis focused mainly on the quantitative evaluation of the error, zero cloud cover was not considered 
a critical issue, and the study focused on the non -cloudy pixels selected by sampling. In summary, 

● 4 seasonal cases of variable Land Cover were selected.  
● Minimal Cloud Coverage during day/night acquisitions was desired 
● Creation of data frame via stratified random point sampling of 2500 instances among LC classes 

was implemented 
● Dates :  

○ Winter : 06 January 2023 , 
○ Spring :  28 May 2023, 
○ Summer : 20 August 2023,  
○ Autumn : 29 September 2023 

● The 4-Parameter Diurnal Temperature Cycle Model GOT01 developed initially on the first 
iteration was used  with a δΤ free parameter and initial values provided by ERA5 Land 
Temperature 

● A Grid Search on the δΤ parameter was conducted for Sensitivity Analysis of the models. 

 

Regarding the computational performance of the Levenberg-Marquardt Nonlinear Least-Squares 
algorithm, log info metadata  were summarized providing insight about the reason for termination of 
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algorithm, convergence issues etc.  The accuracy of the Levenberg-Marquardt algorithm and its 
successful completion is controlled by the convergence parameters ftol, ptol, and gtol. These parameters 
are used in tests which make three types of comparisons between the approximation par,a numeric 
vector of the initial conditions,  and a solution. Algorithm terminates when any of the tests is satisfied. 
If any of the convergence parameters is less than the machine precision, then the algorithm only 
attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. 
The tests assume that the fitting function (the DTC model) as well as its Jacobian matrix are reasonably 
well behaved. If this condition is not satisfied, then the algorithm may incorrectly indicate convergence.  

 

Table TTT1.MODIS LST images and acquisition solar times of the Ahero experimental setting. 

Date  MOD Day 
(TERRA) 

MYD Day 
(AQUA) 

MOD Night 
(TERRA) 

MYD Night 
(AQUA) 

06/01/2023 

Local Solar 
Time 

9.8 14.2 22.1 25.7 

28/05/2023 10.3 14.4 22.7 25.8 

20/08/2023 10.2 14.2 22.5 25.6 

29/09/2023 9.6 14.2 21.9 25.6 

 
The image Acquisition of MODIS images for the Ahero experimental study is presented on the above  
table (Table TTT1). The map that follows (Table XXX3) presents the geographic distribution of land 
cover classes in the Ahero study area for the year 2019. 
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Figure XXX3. Land Cover map of the  Aher0 Area Of Interest. 

 
Winter Case Study - 06 January 2023 

 

The inherent uncertainties and errors of MODIS and Sentinel 3 LST data for the winter experimental 
study is summarized in Kelvin degree units,per Land Cover Class on the two following tables ( TTT2,  
TTT3). 

Table TTT2. Sentinel 3 image LST inherent errors per land cover class - Winter Case Study 

 Sentinel 3 LST Uncertainty Error 

Land Cover Minimum Average Maximum 

Built-up 0.55 0.73 1.42 

Cropland 0.53 0.66 0.99 
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Evergreen broadleaf closed forest 0.55 0.65 0.99 

Evergreen broadleaf open forest 0.6 0.65 0.99 

Herbaceous vegetation 0.6 0.71 2.15 

Herbaceous wetland 0.59 0.86 1.76 

Permanent water bodies 0.59 0.66 1.29 

Shrubland 0.56 0.69 1.42 

Unknown closed forest type 0.54 0.65 0.83 

Unknown open forest type 0.53 0.66 1.01 

Weighted by Area Average 0.53 0.67 2.15 

 
Table TTT3. MODIS image LST inherent errors per land cover class - Winter Case Study 

 

 MODIS LST Error 

Land Cover Minimum Average Maximum 

Built-up 1 1.27 2 

Cropland 1 1.22 2 

Evergreen broadleaf closed forest 1 1.39 1.75 

Evergreen broadleaf open forest 1 1.25 1.75 

Herbaceous vegetation 1 1.27 1.5 

Herbaceous wetland 1 1.3 1.5 

Permanent water bodies 1 1.12 1.5 

Shrubland 1 1.28 1.75 

Unknown closed forest type 1 1.22 1.5 
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Unknown open forest type 1 1.2 1.75 

Weighted by Area Average 1 1.22 2 

 
The experimental winter case study results are presented as partial zonal statistics of the 
Calibration/Validation RMSE, and the Calibration Residual at each MODIS LST instance, for all the 
involved Land Cover classes. The zonal analysis involved the calculation of maximum, minimum, Q1/Q3 
quantiles, average, and standard deviation metrics, over the whole image. Furthermore, in order to 
assess the model performance in a more general manner, a global average RMSE statistic is given for 
Calibration, as a goodness of fit metric, and Validation, as an external data evaluation. A DTC model 
performance summary is presented on the following Table TTT4.  

Table TTT4. Ahero - 06 January 2023 - DTC performance metrics summary. 

Land Cover 
Built-up Cropland Evergreen 

Broadleaf 
Closed 
Forest 

Evergreen 
Broadleaf 

Open 
Forest 

Herbaceou
s 

Vegetation 

Herbaceous 
Wetland 

Permanent 
Water 
Bodies 

Shrubland Unknown 
Closed 

Forest Type 

Unknown 
Open 

Forest 
Type 

max Calibration 
RMSE 6.26 6.04 5.74 5.52 5.49 4.58 4.82 4.53 6.83 5.41 

q75 Calibration 
RMSE 2.17 2.67 4.61 3.02 1.87 2.56 3.99 1.63 3.2 2.24 

avg 
Calibration 

RMSE 
1.97 2.16 3.41 2.87 1.71 2.09 3.61 1.55 2.49 1.88 

std Calibration 
RMSE 1.07 1.05 1.36 1.44 0.94 0.99 0.58 0.76 1.46 0.89 

q25 Calibration 
RMSE 1.4 1.4 2.25 1.8 1.12 1.35 3.39 1.12 1.49 1.34 

min Calibration 
RMSE 0.48 0 1.15 1.76 0.23 0.44 1.27 0.77 0.54 0.33 

avg Res 
MODISt1 1.57 1.8 1.52 2.65 1.7 -0.11 -1.31 1.77 2.58 1.77 

avg Res 
MODISt2 -2.16 -2.57 -5.52 -3.61 -0.74 -2.4 -4.98 -0.93 -3.14 -2.21 

avg Res 
MODISt3 -0.72 -1.32 -1.41 -1.22 -1.43 -0.34 1.6 -0.92 -1.34 -1.32 

avg Res 
MODISt4 1.38 0.63 -0.3 1.49 1.31 2.24 4.4 1.14 0.28 0.23 
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max Validation 
RMSE 8.7 10.99 7.42 8.51 9.45 10.79 6.14 7.71 12.5 7.53 

q75 Validation 
RMSE 4.3 4.23 3.74 4.22 5.59 4.57 4.22 4.49 4.62 3.93 

avg 
Validation 

RMSE 
3.45 3.47 3.02 4.05 4.44 3.35 3.22 3.84 3.99 3.35 

std Validation 
RMSE 1.52 1.24 1.37 1.98 1.73 1.99 1.32 1.05 1.92 1.04 

q25 Validation 
RMSE 2.44 2.57 2.42 2.98 3.43 2.04 2.71 3.19 2.84 2.64 

min Validation 
RMSE 0.69 0.62 0.08 1.87 0.03 0.1 0.11 1.43 1.62 0.25 

 
The argument of minima for the Calibration RMS Error metric, in δΤ values, provided insight about the 
grid search tuning procedure, while the tuning/sensitivity analysis results for Calibration /Validation 
RMSE  are presented on the following table  (Table TTT5) and figures (XXX4,XXX5,XXX6), for land 
cover classes of Cropland, Shrubland and Herbaceous Vegetation. 

 
Table TTT5. Ahero - 06 January 2023 - Calibration and Validation RMSE argument of minima for the 

δΤ parameter. 

Land Cover 
Built-up Cropland Evergreen 

Broadleaf 
Closed 
Forest 

Evergreen 
Broadleaf 

Open Forest 

Herbaceous 
Vegetation 

Herbaceous 
Wetland 

Permanent 
Water 
Bodies 

Shrubland Unknown 
Closed 

Forest Type 

Unknown 
Open Forest 

Type 

δΤ Calibration -10.5 -11 -8 -5.5 -9 -3 4.5 -9 -10 -11 

δΤ Validation -14 -16 -16 -16 -14.5 .15 -6.5 -16 -16 -11.5 

LC percentage 
% 2.28 51.88 3.4 0.36 5.88 2.28 9.64 2.64 2.44 19.56 
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Figure XXX4. Ahero - 06 January 2023 - δΤ Scree Plot for Calibration and Validation RMSE. 
Cropland land cover. 

 

 
Figure XXX5. δΤ Ahero - 06 January 2023 - Scree Plot for Calibration and Validation RMSE. 

Herbaceous Vegetation land cover. 
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Figure XXX6. Ahero - 06 January 2023 - δΤ Scree Plot for Calibration and Validation RMSE. 

Shrubland land cover. 
 

The selection of an optimal δΤ equal to -11, as the argument of minima for Calibration RMSE, 
guaranteed an overall good model fit through all 4 MODIS acquisition times. When focusing, however, 
on the Night LST images, the selected δΤ provided the best fit to data, among all other values, with 
minimum residual error. 
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Figure XXX7. Ahero - 06 January 2023 - Average Fitted DTC models for δΤ equal to -11 
The average RMSE metric for Calibration and Validation respectively, considering all the land cover 
classes of the AOI, provides an overall performance indicator for the DTC model, was calculated as a 
weighted mean of the partial summary metrics of Table TTT5 and it is given by the following values 
(kelvin degrees):  

● Calibration RMSE: 2.24 

● Validation RMSE: 3.24 

In regards with the deviation of the fitted parameters from the ERA5 initial values the Mean Error was 
calculated for each of the 4 DTC parameters (Table TTT6). 
 
Table TTT6. Ahero - 06 January 2023 - Fitted DTC parameters deviation from ERA5 Land Reanalysis 

Initial values  

DTC Parameter 
Mean Error Initial vs Fitted DTC Coefficient Deviation 

T0  8.85 

Ta 0.2 
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tm 0.98 

ts -0.61 

 

Regarding the algorithm’s computational performance all 4 parameters converged for all 2500 data 
points. 
 
Spring Case Study - 28 May 2023 

 
The inherent uncertainties and errors of MODIS and Sentinel 3 LST data for the spring experimental 
study is summarized in Kelvin degree units,per Land Cover Class on the two following tables (TTT7, 
TTT8). 

 
Table TTT7. Sentinel 3 image LST inherent errors per land cover class - Spring Case Study 

 Sentinel 3 LST Uncertainty Error 

Land Cover Minimum Average Maximum 

Built-up 0.5 0.67 0.97 

Cropland 0.51 0.66 1.22 

Evergreen broadleaf closed forest 0.53 0.62 0.65 

Evergreen broadleaf open forest 0.59 0.63 0.69 

Herbaceous vegetation 0.59 0.7 0.98 

Herbaceous wetland 0.59 0.71 1.1 

Permanent water bodies 0.59 0.63 1.23 

Shrubland 0.55 0.69 0.91 

Unknown closed forest type 0.51 0.65 0.94 

Unknown open forest type 0.57 0.62 0.75 

Weighted by Area Average 0.5 0.66 1.23 
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Table TTT8. MODIS image LST inherent errors per land cover class - Spring Case Study 
 

 MODIS LST Error 

Land Cover Minimum Average Maximum 

Built-up 1 1.31 1.75 

Cropland 1 1.28 1.75 

Evergreen broadleaf closed forest 1 1.56 1.75 

Evergreen broadleaf open forest 1 1.31 1.5 

Herbaceous vegetation 1 1.26 1.75 

Herbaceous wetland 1 1.19 1.5 

Permanent water bodies 1 1.06 1.25 

Shrubland 1 1.25 1.5 

Unknown closed forest type 1 1.33 1.75 

Unknown open forest type 1 1.43 1.75 

Weighted by Area Average 1 1.27 1.75 

 
The experimental spring case study results are presented as partial zonal statistics of the 
Calibration/Validation RMSE, and the Calibration Residual at each MODIS LST instance, for all the 
involved Land Cover classes. The zonal analysis involved the calculation of maximum, minimum, Q1/Q3 
quantiles, average, and standard deviation metrics, over the whole image. Furthermore, in order to 
assess the model performance in a more general manner, a global average RMSE statistic is given for 
Calibration, as a goodness of fit metric, and Validation, as an external data evaluation. A DTC model 
performance summary is presented on the following Table TTT9.  

 

Table TTT9. Ahero - 28 May 2023 - DTC performance metrics summary. 

Land Cover Built-up Cropland 
Evergreen 
Broadleaf 

Evergreen 
Broadleaf 

Herbaceou
s 

Vegetation 

Herbaceous 
Wetland 

Permanent 
Water 
Bodies 

Shrubland 
Unknown 

Closed 
Forest Type 

Unknown 
Open 
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Closed 
Forest 

Open 
Forest 

Forest 
Type 

max Calibration 
RMSE 4.99 7.79 3.38 3.03 8.36 5.71 4.7 8.35 5.94 6.48 

q75 Calibration 
RMSE 1.99 1.91 2.14 2.67 3.31 3.77 4.14 2.82 2.38 2.36 

avg 
Calibration 

RMSE 1.5 1.59 1.91 1.89 2.42 2.8 3.57 2.21 2.05 1.8 

std Calibration 
RMSE 0.9 1.1 0.47 0.85 1.67 1.16 0.75 1.65 0.91 0.99 

q25 Calibration 
RMSE 0.84 0.97 1.56 1.29 1.28 2.08 3.14 1.17 1.53 1.12 

min Calibration 
RMSE 0 0 1.27 0.51 0.38 0.74 1.01 0.25 0.65 0.06 

avg Res 
MODISt1 1.88 1.62 2.39 2.42 2.31 0.92 -1.69 2.01 2.99 2.05 

avg Res 
MODISt2 -1.01 -1.12 -1.53 -1.24 -1.04 -2.02 -4.96 -0.86 -1.32 -1.02 

avg Res 
MODISt3 -1 -1.59 -1.59 -1.88 -3.3 -2.43 1.38 -3.2 -1.78 -2.06 

avg Res 
MODISt4 -0.06 0.43 0.65 0.38 0.45 2.59 3.8 -0.05 0.22 0.42 

max Validation 
RMSE 8.54 11.27 9.77 7.89 13.18 7.1 5.66 9.3 9.89 12.13 

q75 Validation 
RMSE 6.23 5.54 7.21 6.78 6.37 5.25 3.31 6.72 6.56 6.18 

avg 
Validation 

RMSE 4.41 3.83 5.35 4.76 5.16 3.67 2.68 5.29 5.53 4.81 

std Validation 
RMSE 2.35 2.3 2.42 2.64 1.98 1.85 1.27 2.15 1.79 2.14 

q25 Validation 
RMSE 2.85 1.48 3.19 3.62 3.79 2.51 1.93 3.89 4.24 3.47 

min Validation 
RMSE 0.13 0 0.19 0.34 0.86 0.02 0.13 0.75 2.53 0.04 

 
The argument of minima for the Calibration RMS Error metric, in δΤ values, provided insight about the 
grid search tuning procedure, while the tuning/sensitivity analysis results for Calibration /Validation 
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RMSE  are presented on the following table  (Table TTT10) and figures XXX8, XXX9, XXX10, for land 
cover classes of Cropland, Shrubland and Herbaceous Vegetation 

 

Table TTT10. Ahero - 28 May 2023 - Calibration and Validation RMSE argument of minima for the δΤ 
parameter. 

Land Cover 
Built-up Cropland Evergreen 

Broadleaf 
Closed 
Forest 

Evergreen 
Broadleaf 

Open Forest 

Herbaceous 
Vegetation 

Herbaceous 
Wetland 

Permanent 
Water 
Bodies 

Shrubland Unknown 
Closed 

Forest Type 

Unknown 
Open Forest 

Type 

δΤ Calibration -4 -3.5 -5 -5.5 -4 -1 7 -3 -5.5 -4 

δΤ Validation -9.5 -10.5 -10.5 -11 -11 -16 7 -16 -12 -16 

LC percentage 
% 2.12 54.96 1.84 0.48 6.68 2.44 8.68 4.28 16.28 2.24 

 

Figure XXX8. Ahero - 28 May 2023  - δΤ Scree Plot for Calibration and Validation RMSE. Cropland 
land cover. 

 

 
Figure XXX9. δΤ Ahero - 28 May 2023 - Scree Plot for Calibration and Validation RMSE. Herbaceous 

Vegetation land cover. 
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Figure XXX10. Ahero - 28 May 2023 - δΤ Scree Plot for Calibration and Validation RMSE. Shrubland 

land cover. 

 
The selection of an optimal δΤ equal to -3.5, as the argument of minima for Calibration RMSE, 
guaranteed an overall good model fit through all 4 MODIS acquisition times. When focusing, however, 
on the Night LST images, the selected δΤ provided the best fit to data, among all other values, with 
minimum residual error. 
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Figure XXX11. Ahero -28 May 2023 - Average Fitted DTC models for δΤ equal to -11 

The average RMSE metric for Calibration and Validation respectively, considering all the land cover 
classes of the AOI, provides an overall performance indicator for the DTC model, was calculated as a 
weighted mean of the partial summary metrics of Table XXX and it is given by the following values 
(kelvin degrees):  
● Calibration RMSE: 1.96 

● Validation RMSE: 4.22 

In regards with the deviation of the fitted parameters from the ERA5 initial values the Mean Error was 
calculated for each of the 4 DTC parameters (figure TTT11). 

 
Table TTT11. Ahero - 28 May 2023 - Fitted DTC parameters deviation from ERA5 Land Reanalysis 

Initial values  
 

DTC Parameter 
Mean Error Initial vs Fitted DTC Coefficient Deviation 

T0  3.39 

Ta 0.51 

tm 0.54 

ts -0.6 

 

Regarding the algorithm’s computational performance all 4 parameters converged for all 2500 data 
points. 
 
Summer Case Study - 20 August 2023 

 
The inherent uncertainties and errors of MODIS and Sentinel 3 LST data for the summer experimental 
study are summarized in Kelvin degree units,per Land Cover Class on the two following tables (TTT11, 
TTT12). 

 
Table TTT11. Sentinel 3 image LST inherent errors per land cover class - Summer Case Study 

 Sentinel 3 LST Uncertainty Error 

Land Cover Minimum Average Maximum 

Built-up 0.38 0.66 1.35 
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Cropland 0.35 0.61 2.26 

Evergreen broadleaf closed forest 0.6 0.6 0.71 

Evergreen broadleaf open forest 0.5 0.57 0.6 

Herbaceous vegetation 0.35 0.64 0.86 

Herbaceous wetland 0.2 0.67 1.45 

Permanent water bodies 0.2 0.32 0.99 

Shrubland 0.37 0.63 0.81 

Unknown closed forest type 0.36 0.61 0.84 

Unknown open forest type 0.5 0.59 0.74 

Weighted by Area Average 0.2 0.61 2.26 

 
Table TTT12. MODIS image LST inherent errors per land cover class - Summer Case Study 

 

 MODIS LST Error 

Land Cover Minimum Average Maximum 

Built-up 1 1.38 2 

Cropland 1 1.32 1.75 

Evergreen broadleaf closed forest 1 1.27 1.5 

Evergreen broadleaf open forest 1.25 1.4 1.75 
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Herbaceous vegetation 1 1.16 1.75 

Herbaceous wetland 1 1.11 1.5 

Permanent water bodies 1 1.09 1.5 

Shrubland 1 1.25 1.75 

Unknown closed forest type 1 1.42 1.75 

Unknown open forest type 1 1.38 1.75 

Weighted by Area Average 1 1.28 2 

 
The experimental summer case study results are presented as partial zonal statistics of the 
Calibration/Validation RMSE, and the Calibration Residual at each MODIS LST instance, for all the 
involved Land Cover classes. The zonal analysis involved the calculation of maximum, minimum, Q1/Q3 
quantiles, average, and standard deviation metrics, over the whole image. Furthermore, in order to 
assess the model performance in a more general manner, a global average RMSE statistic is given for 
Calibration, as a goodness of fit metric, and Validation, as an external data evaluation. A DTC model 
performance summary is presented on the following Table TTT13.  

Table TTT13. Ahero - 20 August 2023 - DTC performance metrics summary. 

Land Cover Built-up Cropland 

Evergreen 
Broadleaf 

Closed 
Forest 

Evergreen 
Broadleaf 

Open 
Forest 

Herbaceou
s 

Vegetation 

Herbaceou
s Wetland 

Permanent 
Water 
Bodies 

Shrubland 
Unknown 

Closed 
Forest Type 

Unknown 
Open 

Forest 
Type 

max Calibration 
RMSE 3.23 4.91 4.07 3.74 4.75 3.95 5.77 3.05 3.42 4.66 

q75 Calibration 
RMSE 1.68 1.72 1.81 1.94 1.69 3 4.05 1.58 1.53 1.52 

avg Calibration 
RMSE 1.12 1.14 1.42 1.54 1.23 1.96 3.69 1.06 1.2 1.11 

std Calibration 
RMSE 0.8 0.9 0.77 1.13 0.81 1.18 0.69 0.68 0.87 0.86 
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q25 Calibration 
RMSE 0.47 0.39 1.06 1.07 0.6 1.11 3.53 0.44 0.59 0.49 

min Calibration 
RMSE 0 0 0 0 0 0 0.02 0 0 0 

avg Res MODISt1 1.01 0.82 0.19 0.56 1.79 -0.03 -2.29 1.54 0.78 0.75 

avg Res 
MODISt2 -0.93 -1.23 -2.5 -2.29 -0.94 -2.36 -4.7 -0.73 -1.48 -1.17 

avg Res 
MODISt3 -0.53 -0.56 0.28 -0.31 -0.09 0.1 1.71 -0.28 -0.33 -0.74 

avg Res 
MODISt4 0.1 -0.23 0.7 0.79 -0.27 1.84 4.64 -0.24 0.19 -0.26 

max Validation 
RMSE 4.95 5.9 2.63 2.07 6.4 6.2 8.92 5.31 3.5 3.85 

q75 Validation 
RMSE 2.15 1.88 1.43 1.71 3.25 3.14 5.12 2.81 1.94 1.95 

avg Validation 
RMSE 1.6 1.38 1.14 1.14 2.49 2.49 4.29 2.09 1.49 1.35 

std Validation 
RMSE 0.98 0.86 0.53 0.56 1.11 1.48 1.62 1.02 0.75 0.83 

q25 Validation 
RMSE 0.97 0.74 0.81 0.73 1.9 1.56 3.75 1.42 1.01 0.71 

min Validation 
RMSE 0.1 0 0.07 0.46 0.12 0.1 0.14 0 0.1 0.01 

 
The argument of minima for the Calibration RMS Error metric, in δΤ values, provided insight about the 
grid search tuning procedure, while the tuning/sensitivity analysis results for Calibration /Validation 
RMSE  are presented on the following table  (Table TTT14) and figures XXXX, for land cover classes of 
Cropland, Shrubland and Herbaceous Vegetation 

 

Table TTT14. Ahero - 20 August 2023  - Calibration and Validation RMSE argument of minima for the 
δΤ parameter. 

Land Cover 
Built-up Cropland Evergreen 

Broadleaf 
Closed 
Forest 

Evergreen 
Broadleaf 

Open Forest 

Herbaceous 
Vegetation 

Herbaceous 
Wetland 

Permanent 
Water 
Bodies 

Shrubland Unknown 
Closed 

Forest Type 

Unknown 
Open Forest 

Type 
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δΤ Calibration -8.5 -7.5 -6 -7 -11.5 -1 4.5 -11.5 -9 -10 

δΤ Validation 3.5 4.5 2 5 4 -16 6.5 4.5 5.5 5 

LC percentage 
% 2.32 49.1 2.16 0.4 8.04 3 14.81 4.08 14.53 1.56 

 

 

 
 

Figure XXX12. Ahero  - 20 August 2023  - δΤ Scree Plot for Calibration and Validation RMSE. 
Cropland land cover. 

 
 

 
Figure XXX13. δΤ Ahero  - 20 August 2023  - Scree Plot for Calibration and Validation RMSE. 

Herbaceous Vegetation land cover. 
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Figure XXX14. Ahero  - 20 August 2023  - δΤ Scree Plot for Calibration and Validation RMSE. 
Shrubland land cover. 

 
The selection of an optimal δΤ equal to -9, as the argument of minima for Calibration RMSE, guaranteed 
an overall good model fit through all 4 MODIS acquisition times. When focusing, however, on the Night 
LST images, the selected δΤ provided the best fit to data, among all other values, with minimum residual 
error. 
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Figure XXX15. Ahero  - 20 August 2023  - Average Fitted DTC models for δΤ equal to -9 

The average RMSE metric for Calibration and Validation respectively, considering all the land cover 
classes of the AOI, provides an overall performance indicator for the DTC model, was calculated as a 
weighted mean of the partial summary metrics of Table TTT14 and it is given by the following values 
(kelvin degrees):  
● Calibration RMSE: 1.56 

● Validation RMSE: 1.98 

In regards with the deviation of the fitted parameters from the ERA5 initial values the Mean Error was 
calculated for each of the 4 DTC parameters (TTT15). 
 
Table TTT15. Ahero - 20 August 2023  - Fitted DTC parameters deviation from ERA5 Land Reanalysis 

Initial values  
 

DTC Parameter 
Mean Error Initial vs Fitted DTC Coefficient Deviation 

T0  6.95 

Ta 1.92 

tm 0.99 

ts -0.5 

 

Regarding the algorithm’s computational performance nearly all 4 parameters converged for all 2498 
data points. 
 
Autumn Case Study - 29 September 2023 

 
The inherent uncertainties and errors of MODIS and Sentinel 3 LST data for the autumn experimental 
study are summarized in Kelvin degree units,per Land Cover Class on the two following tables (TTT16, 
TTT17). 

 
Table TTT16. Sentinel 3 image LST inherent errors per land cover class - Autumn Case Study 

 Sentinel 3 LST Uncertainty Error 

Land Cover Minimum Average Maximum 

Built-up 0.55 0.63 0.7 

Cropland 0.55 0.64 1.03 
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Evergreen broadleaf closed forest 0.64 0.64 0.64 

Evergreen broadleaf open forest 0.64 0.67 0.77 

Herbaceous vegetation 0.62 0.73 1.05 

Herbaceous wetland 0.62 0.7 0.8 

Permanent water bodies 0.67 0.68 0.71 

Shrubland - - - 

Unknown closed forest type 0.55 0.63 0.7 

Unknown open forest type 0.64 0.65 0.66 

Weighted by Area Average 0.55 0.66 1.05 

 
Table TTT17. MODIS image LST inherent errors per land cover class - Autumn Case Study 

 

 MODIS LST Error 

Land Cover Minimum Average Maximum 

Built-up 1.5 1.63 1.75 

Cropland 1.25 1.66 2 

Evergreen broadleaf closed forest 1.75 1.75 1.75 

Evergreen broadleaf open forest 1.5 1.75 2 

Herbaceous vegetation 1.25 1.5 1.75 

Herbaceous wetland 1.5 1.5 1.5 
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Permanent water bodies 1.25 1.37 1.5 

Shrubland - - - 

Unknown closed forest type 1.5 1.71 2 

Unknown open forest type 1.5 1.68 2 

Weighted by Area Average 1.25 1.62 2 

 
The experimental autumn case study results are presented as partial zonal statistics of the 
Calibration/Validation RMSE, and the Calibration Residual at each MODIS LST instance, for all the 
involved Land Cover classes. The zonal analysis involved the calculation of maximum, minimum, Q1/Q3 
quantiles, average, and standard deviation metrics, over the whole image. Furthermore, in order to 
assess the model performance in a more general manner, a global average RMSE statistic is given for 
Calibration, as a goodness of fit metric, and Validation, as an external data evaluation. A DTC model 
performance summary is presented on the following Table TTT18.  

Table TTT18. Ahero - 29 September 2023 - DTC performance metrics summary. 

Land Cover Built-up Cropland 

Evergreen 
Broadleaf 

Closed 
Forest 

Evergreen 
Broadleaf 

Open 
Forest 

Herbaceou
s 

Vegetation 

Herbaceou
s Wetland 

Permanent 
Water 
Bodies 

Shrubland 
Unknown 

Closed 
Forest Type 

Unknown 
Open 

Forest 
Type 

max Calibration 
RMSE 1.31 10.11 1.73 3.69 10.45 7.96 5.11 - 4.73 5.01 

q75 Calibration 
RMSE 1.2 4.67 1.66 2.51 3.8 3.13 4.49 - 3.1 4.06 

avg Calibration 
RMSE 1.09 3.41 1.45 2.28 3.5 3.23 3.73 - 2.6 2.87 

std Calibration 
RMSE 0.31 1.81 0.37 0.98 2.49 2.17 0.94 - 1.26 1.48 

q25 Calibration 
RMSE 0.98 1.8 1.31 1.72 1.7 2.01 2.92 - 1.87 1.38 

min Calibration 
RMSE 0.87 0.66 1.03 1.49 1.31 1.57 2.26 - 1 0.6 
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avg Res MODISt1 0.91 4.68 2.64 1.9 4.51 2.71 -0.22 - 2.62 3.04 

avg Res 
MODISt2 -1.11 -2.78 -1.11 -3.08 -1.3 -1.36 -5.35 - -3.05 -3.18 

avg Res 
MODISt3 -0.83 1.01 0.24 -0.37 -3.18 -3.64 -1.22 - -0.57 0.25 

avg Res 
MODISt4 0.72 -1.26 -0.07 -0.92 0.48 2.99 4.62 - 1.17 -0.82 

max Validation 
RMSE 2.2 13.6 6.33 4.78 17.77 12.73 3.92 - 8.45 12.64 

q75 Validation 
RMSE 2.11 7.03 4.91 4.54 12.25 7.93 1.1 - 6.45 7.17 

avg Validation 
RMSE 2.01 5.24 3.5 3.22 10.52 5.98 1.03 - 4.81 5.26 

std Validation 
RMSE 0.27 2.66 4.01 1.64 3.19 4.05 0.83 - 2.77 3.12 

q25 Validation 
RMSE 1.92 2.87 2.08 1.97 8.3 3.15 0.62 - 3.78 2.27 

min Validation 
RMSE 1.82 0.3 0.67 1.53 6.17 1.13 0.01 - 0.55 1.29 

The argument of minima for the Calibration RMS Error metric, in δΤ values, provided insight about the 
grid search tuning procedure, while the tuning/sensitivity analysis results for Calibration /Validation 
RMSE  are presented on the following table  (Table TTT19) and figures XXX16, XXX17, for land cover 
classes of Cropland and Herbaceous Vegetation 

 
Table TTT19. Ahero - 29 September 2023 - Calibration and Validation RMSE argument of minima for 

the δΤ parameter. 

Land Cover 
Built-up Cropland Evergreen 

Broadleaf 
Closed 
Forest 

Evergreen 
Broadleaf 

Open 
Forest 

Herbaceou
s 

Vegetation 

Herbaceou
s Wetland 

Permanent 
Water 
Bodies 

Shrubland Unknown 
Closed 
Forest 
Type 

Unknown 
Open 

Forest 
Type 

δΤ Calibration -10.5 -13.5 -14 -14 -12 -9.5 1.5  -8.5 -14.5 

δΤ Validation -15 -16 -15.5 -12 -16 -13.5 -15  -13 -16 



D7.1 - Algorithm Theoretical Baseline Documents (ATBDs) and Product Specifications 

 

74 
 

LC percentage 
% 1.15 57.47 1.72 2.3 8.05 4.02 10.92  10.34 4.02 

 

 
Figure XXX16. Ahero  - 29 September 2023  - δΤ Scree Plot for Calibration and Validation RMSE. 

Cropland land cover. 
 

 
 

Figure XXX17. δΤ Ahero  - 29 September 2023  - Scree Plot for Calibration and Validation RMSE. 
Herbaceous Vegetation land cover. 

The selection of an optimal δΤ equal to -0.5, as the argument of minima for Calibration RMSE, 
guaranteed an overall good model fit through all 4 MODIS acquisition times. When focusing, however, 
on the Night LST images, the selected δΤ provided the best fit to data, among all other values, with 
minimum residual error. 
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Figure XXX18. Ahero  - 29 September 2023  - Average Fitted DTC models for δΤ equal to -0.5 

 
The average RMSE metric for Calibration and Validation respectively, considering all the land cover 
classes of the AOI, provides an overall performance indicator for the DTC model, was calculated as a 
weighted mean of the partial summary metrics of Table XXX and it is given by the following values 
(kelvin degrees):  
● Calibration RMSE: 3.25 

● Validation RMSE: 5.08 

In regards with the deviation of the fitted parameters from the ERA5 initial values the Mean Error was 
calculated for each of the 4 DTC parameters (Table TTT20). 

 
Table TTT20. Ahero  - 29 September 2023  - Fitted DTC parameters deviation from ERA5 Land 

Reanalysis Initial values  
 

DTC Parameter 
Mean Error Initial vs Fitted DTC Coefficient Deviation 

T0  6.56 
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Ta 1.7 

tm 0.61 

ts -0.44 

 

Regarding the algorithm’s computational performance all 4 parameters converged for all 2500 data 
points. 
 
The conclusions drawn from the data analysis performed in the update iteration can be summarized as 
the following:  
 
● Regarding the influence of seasonality on the accuracy of DTC models, it was observed that it 

exists. The fitting models achieved the smallest errors in the spring and summer months. The 
worst performances were observed in the autumn months. 
 

● As for the influence that the underlying Land Use, Land Cover (LU/LC) has on the DTC result, 
it has an impact on the accuracy of the models which is justified by the evident differences in 
RMSE between LU/LC classes. While the Cropland/ Unknown Open Forest classes are the most 
dominant ones in the area of the case study, their RMSE is close to the above average values. 
Throughout the year, the Permanent Water Bodies, and Wetland land cover classes exhibit the 
higher Calibration RMS errors, while the high validation RMS errors are more randomly 
distributed among classes and seasons. The above is also supported by the adjustable free 
parameter δT which is used to obtain the optimum results. Initially the tuned value varies to a 
small or larger extent between the LU/LV classes but where it has a very large difference is 
specifically in the Permanent Water Bodies class, where, in contrast to all other classes, it takes 
positive values. This fact could be related to the thermal lag that water bodies exhibit in their 
temperature variation due to their high thermal capacit 
 

● With respect to the cloud cover regions it is obvious that they should not be included in DTC 
modeling because the errors in the input LSTs are large and contribute, for these pixels, to 
unacceptable final estimation errors. Also cloud masking procedures bring about nan values 
which results in insufficient data to converge the curve fitting algorithm at these locations. For 
the data pipeline involving DTC fitting, DTC prediction at ECOSTRESS time, and STTFN fusion 
of MODIS and ECOSTRESS, the rather tight constraint of having for the given Area of Interest 
4 Cloud free images is evident. 
 

● Finally, in the more general discussion concerning the fidelity of curve fitting to MODIS data 
during the Calibr;ation and the External Validation with Sentinel 3 LST data, it was observed 
from the average residuals of the DTC model to the actual 4 MODIS instances, across the 
different classes and seasons, that the model fits best in the afternoon and evening observations, 
while it gives the largest errors at noon. The above conclusion is consistent with the 
corresponding validation error since the Sentinel 3 LST image was acquired at 22.45 local time 
very close to MOD Terra LST view time. 
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3.8. Spatiotemporal Thermal Data Fusion with Deep Learning 
(STTFN) 

 
 
Challenge: 
 

The major challenges in the approach of thermal sharpening methods are discussed in detail in 
Deliverable D3 where the state-of-the-art review in this field is presented. In conclusion, these include: 

1. The Uncertainty in LST retrievals  

2.   Low thermal contrast of downscaled LST 

3.   Non-Linearity of LST temporal change 

4.   Cloud contamination  

5.   Model generalization 

 
In addition to these, there are the imagery specificities that exist and are characteristic of the thermal 
data under consideration for the current study. 

● Satellite images from ECOSTRESS thermal sensors do not exhibit a stable spatio-temporal 
acquisition pattern. This fact combined with the condition for cloud-free imagery limits their 
availability for model training and development, with implications on the experimental design. 
The instability that characterizes their acquisition time can have a serious impact on the 
downscaling result, according to challenge 3, and for this reason the pre-processing step of DTC 
curve fitting, as mentioned in Chapter 3.7 was employed for the temporal normalization of 
thermal fusion image pairs.  In addition, temporal normalization is only performed on the low 
spatial resolution data. In ECOSTRESS high spatial resolution data, the curve fitting with the 
use of DTC models is not possible for daily acquisitions, as these include only 1 to 2 images per 
day. 

● The observed radiometric artifacts of oblique stripping that ECOSTRESS LST images exhibit. 
Despite the fact that for vertical/horizontal image descripting many algorithms have been 
developed and are available, with high potential for radiometric correction, there’s no significant 
variety of methods for oblique stripes. 

 
Approach: 
 

The decided approach within the course of AFRI4Cast is the application of a deep learning based 
SpatioTemporal Temperature Fusion Network (STTFN) method, as described by Yin et al. (2021), 
through adaptation of their proposed Deep Learning architecture for ECOSTRESS/MODIS imagery.  
The flexibility that this Deep Learning approach offers is a considerable advantage over other 
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conventional fusion methods.  The purpose is to provide a proof of concept for the possibility of 
spatiotemporal downscaling of ECOSTRESS LST data, given their operational specificities, as well as to 
give evaluation results for the downscaled product. 

 
Methodology: 
 

This section summarizes the methodological framework, which was described in detail in Deliverable 
D3 “State of the art review report on analysis methods and algorithms’” and finally was developed and 
applied to the experimental case study. Fusion-based methods such as the one applied, determine the 
relationship between known image pairs of LST, at fine and coarse resolution, and downscale coarse 
resolution (e.g., MODIS LST) when fine resolution (ECOSTRESS) LST is not available.  

In STTFN, a multi-scale fusion Convolutional Neural Network is employed to perform the fusion task. 
It uses two fine-coarse spatial resolution LST image pairs observed before and after the target date to 
train two multi-scale fusion CNNs, and then combine their predictions using a Spatiotemporal-
Consistency (STC)-Weighting function. It is composed of three parts: 

1. a component for super-resolution of temporal change between the input target and 
neighboring coarse spatial resolution LST images 

2. a component for high-level feature abstraction of neighboring fine spatial resolution data 

3. a component of integration of the extracted multi-scale features 

 

The aim is to obtain a pair of fine and coarse LST images that pre-date the target date, for which a coarse 
MODIS image is available, together with another pair of fine and coarse images that post-dating the 
target date. Then, from one MODIS LST image at the target date and two pairs of ECOSTRESS and 
MODIS images at the neighboring dates, a high resolution (ECOSTRESS -like) LST image is predicted. 

For simplicity, the target date is denoted as t2, and the dates pre- and post-dating t2 are denoted as t1 
and t3, respectively. Accordingly, the MODIS coarse resolution image (LST) at t2 is denoted as M2, and 
the ECOSTRESS-MODIS image pairs (LST) at dates t1 and t3 are denoted as E1 and M1 and E3 and M3, 
respectively. As depicted in Figure 14, the implemented STTFN generates a fine spatial resolution image 
via a three-stage process: 

1. Forward and backward model training 

2. Forward and backward prediction 

3. Combination of forward and backward predicted high images to yield a final fine spatial 
resolution predicted image for t2 
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Figure 14. Flowchart of the Spatiotemporal Fusion Network. 

 

 

The architecture of multi-scale fusion CNN is illustrated using the prediction of Ε21>2 from E1, M1 and 
M2 as example (Figure 15). The multi-scale fusion CNN is a fully convolution network, which enables an 
end-to-end mapping from three input images to an output high resolution image. 

It first extracts high-level features of E1 and super resolves the change image between M2 and M1 at the 
same time, then fuses and retrieves the extracted feature maps to the fine spatial resolution result. 
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Therefore, the whole architecture of the multi-scale fusion CNN contains three major parts, termed here 
as: 

● Extraction-Net, a two-layer convolution network employed to extract the high-level features 
of the ECOSTRESS image and provide fine abundant spatial pattern information for the 
prediction. 

● Super-Resolution-Net. The focus in the fusion process is on locating temporal change 
between the target and neighboring dates. By using a super-resolution module, the coarse spatial 
resolution pixels of the temporal change (Subtraction) image are disaggregated into fine spatial 
resolution pixels, which can offer more spatial pattern information. To implement the super-
resolution, a modified version of the super-resolution model “Wide Activation for Efficient and 
Accurate Image Super-Resolution (WDSR)”, (Yu et al., 2018), is used, referred to here as slim-
WDSR. 

● Integration-Net, which is made up of three stacked convolutional layers. The generated 
feature maps are integrated and used to estimate the target image gradually through the 
Integration-Net. 
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Figure 15. Architecture of Multiscale Fusion CNN. 

 



D7.1 - Algorithm Theoretical Baseline Documents (ATBDs) and Product Specifications 

 

82 
 

The core components of the Multiscale Fusion CNN, such as the levels of each sub-network, as well as 
their respective information about the convolutional layers, kernel size, number of filters, activation 
functions, etc. are described on the following Table 13: 

 
 

Table 13. Core components of the Multiscale Fusion CNN. 

LAYERS OF THE MULTI-SCALE FUSION CNN 

Extraction-Net Super-Resolution-Net Integration-Net 

level layer: kernel size, 
filters level layer: kernel size, 

filters level layer: kernel size, 
filters 

X1 conv 3x3, 16,Batch 
Normalization,ReLU SR1 conv 3×3, 32 F1 conv 3x3, 16,Batch 

Normalization,ReLU 

X2 conv 3×3, 32 SR2 conv 1x1, 64, Batch 
Normalization,ReLU F2 conv 3x3, 16,Batch 

Normalization,ReLU 

  SR3 conv 1x1, 64, Batch 
Normalization,ReLU F3 conv 3×3, 1 

  SR4 conv 1x1, 32, Batch 
Normalization,ReLU   

  SR5 conv 3x3, 32, Batch 
Normalization,ReLU   

  SR6 conv 3x3, 32, Batch 
Normalization,ReLU   

 
 
Algorithm Training, optimization and prediction 
 
Two multi-scale CNNs, a backward and a forward, were trained. A Huber Loss function was adopted 
instead of the mean squared error (MSE). Huber Loss or Smooth Mean Absolute Error is a loss function 
that takes the advantageous characteristics of the Mean Absolute Error and Mean Squared Error loss 
functions and combines them into a single loss function. The hybrid nature of Huber Loss makes it less 
sensitive to outliers, just like MAE, but also penalizes minor errors within the data sample, similar to 
MSE. 
 

𝐿%(𝑎) = W
1
2 ⋅ 𝑎

&, 𝑓𝑜𝑟|𝑎| ≤ 𝛿	𝛿 ⋅ [|𝑎| −
1
2 ⋅ 𝛿\ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	^	

 
This function is quadratic for small values of error a, the difference between the observed and predicted 
values, and linear for large values, with equal values and slopes of the different sections at the two points 
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where absolute error equals δ. Huber Loss was selected because of its greater robustness to noise and 
outliers, possibly included to the network by unidentified cloudy pixels in input images. Loss function 
hyperparameter δ was set empirically to 1. 
 
For the optimization, the weights of the network were initialized to small random values, which were 
drawn from a Gaussian distribution Ν(µ,σ)=(0,0.001).The Adam optimizer with standard back 
propagation was applied to minimize the loss and update the network weights until convergence, with 
a value of β1=0.9 and β2=0.999 for its settings. The learning rate α was initialized as 1×10-4 and was 
multiplied by a decaying factor 0.1 every 10 epochs to shrink the searching range of the parameters. 
 
At prediction, two fine spatial resolution images E21>2 and E23>2 at the target date, t2, were produced from 
the two trained networks.  E21>2 was produced from M1, E1 and M2 images, from the forward trained 
CNN.  E23>2 was produced from M3, E3 and M2 images, from the backward trained CNN. Finally, the two 
high resolution LSTs were combined in a weighted sum to obtain the final predicted LST. 
 

𝐸̀& = 𝑝' ⋅ 𝐸&'→& + 𝑝) ⋅ 𝐸&)→&	
 
For the determination of the weights p1, p3, the spatial consistency between the two predicted fine spatial 
resolution images and the corresponding coarse spatial resolution LST image was considered and a 
novel weighting strategy, STC-Weighting, was implemented.  The weight magnitude in STC-Weighting 
depends on the difference between the predicted fine spatial resolution images and the coarse spatial 
resolution image at the target date, in such a way that a smaller difference results in a higher weight. 
The formula for the STC-Weighting is: 

𝑝* =

1
a𝐸&*→& −𝑀&a

1
|𝐸&'→& −𝑀&|

+ 1
|𝐸&)→& −𝑀&|

, 𝑖 = 1,3	

 
 
Experimental Results: 
 

The experimental design and selection of Area of Interest for the application of STTFN to MODIS & 
ECOSTRESS data came as a consequence of availability during image acquisition and as a follow-up to 
the preprocessing methods applied by fitting the MODIS data to a DTC model. Thus following the 
notation preceding in the methodology chapter the data of the experimental case study are listed in the 
following table (Table 14). 

 

Table 14. Experimental case study image dataset for STTFN. 

LST Image Usage Sensor Date Local Solar 
Time 

E1 Training-
Prediction ECOSTRESS 17/01/2023 15.65 
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M1 Training-
Prediction MODIS 17/01/2023 14.1 

E2 Ground Truth 
for Evaluation ECOSTRESS 25/01/2023 23.96 

M2 Training-
Prediction 

DTC Predicted 
MODIS 25/01/2023 23.96 

E3 Training-
Prediction ECOSTRESS 05/12/2023 20.02 

M3 Training-
Prediction MODIS 05/12/2023 21.8 

     

<E2> Predicted LST STFN 
ECOSTRESS 25/01/2023 23.96 

 

 

● Area Coverage:  100x100 km 

● LST Acquisitions for the STTFN experiment only captured Winter phenological change on 
vegetation 

● LST image pairs were resampled to common grid system with the Nearest Neighbor method 

● Patching: Training data was fed into the STTFN as cropped patches of 32X32 pixels with an 
overlap stride equal to 16 (50 % overlap)  

● Image Dimensions (pixels):  1416 X 1416 

● Regarding quantitative evaluation this was performed by comparison with the available E2 
image, which was kept aside for that particular reason. The mean absolute error (MAE), root 
mean square error (RMSE) and structural similarity (SSIM) were calculated using the 
ECOSTRESS high spatial resolution image at the target date as ground truth reference. 

 
The output of the STTFN for the prediction image involved the reconstruction of the predicted patches 
into the initial image grid system. At the initial trials of the network, notable blocky artifacts (gridded 
pattern) were noticed on the reconstructed image, as shown clearly on Figure 16. This result posed a 
serious issue that had to be tackled. To mitigate the blocky artifacts, the followed approach involved: 

● Training with a larger image patch size, keeping only a center region of the patch and removing 
the surrounding padding during reconstruction: This first modification, although it removed 
some lines, didn't have much impact on the reconstructed image. The gridded pattern was 
preserved. 
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● Apply smoothing and blending on the overlapping pixels between consecutive patches: With the 
application of filtering, most or all of the lines were removed but the image quality decreased a 
lot. 

To gain a deeper understanding of the reason these artifacts occured, in the first place, the feature layers 
produced between convolutions had to be accessed and visualized, one by one. It was found that image 
blocks occurred even from the first convolution layer, and all the subsequent ones. An intuitive 
suggestion was that the reason for the generation of blocky artifacts could be the padding of the 2D 
convolutions. Padding is a technique used in convolutional neural networks (CNNs) to preserve the 
spatial dimensions of the input data and prevent the loss of information at the edges of the image. It 
involves adding additional rows and columns of pixels around the edges of the input data. 

Initially padding was set to the “same” method, according to which additional rows and columns of 
pixels around the edges of the input data so that the size of the output feature map is the same as the 
size of the input data. This is achieved by adding rows and columns of pixels with a value of zero around 
the edges of the input data before the convolution operation.  A first step was to try to remove these 
lines by cropping the surrounding border values and resizing the layer dimensions in order to feed the 
next layer. Doing so, indeed removed the blocky pattern, but as well degraded the reconstructed image 
quality severely. In a further modification, upsampling and/or transposing of convolution layers (and 
whenever it was needed, resizing and cropping layers to match the dimensions) in order to upscale the 
resolution, was performed, but this action didn’t enhance the prediction quality. 
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Figure 16. Blocky Artifacts created when reconstructing image from predicted patches. Notice the red 
spot indicating pixels with “no-data” values. 

Finally, a “Valid” padding method was tested. This technique is used in CNNs to process the input data 
without adding any additional rows or columns of pixels around the edges of the data. This means that 
the size of the output feature map is smaller than the size of the input data. After changing to valid 
padding, the resulting image was free of lines and better quality than before but still not quite 
acceptable.  After same further augmentations which comprised of: 

● flip images, adjustment of brightness 

● reducing the patch stride to 8 (25% overlap) 

the predicted reconstructed result reached a good error result, acceptable in relation to the reference 
paper on which STTFN implementation was based on. Evaluation metrics of the study case for the 
predicted ECOSTRESS image was: 

● RMSE: 1.949 

● MAE: 1.649 
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● SSIM:  0.974 

 
In summary, the modified setup of the model was: 

● Patching:  size 32 and stride 8 pixels 

● Image dimensions: resized to 1408 X 1408 

● Total number of training patches: 29926 

● Data Split: 80 % for training, 20 % for validation 

● Early stopping and Dropout Layers modes were used in order to prevent overfitting 

● In every epoch, the best model weights were saved  

● Usage of custom Keras generator to scale data to [0,1] range, perform the augmentation, and 
return a batch of data, with a size of 16 

● The model was trained on an NVIDIA GeForce GTX1650 with 4GB memory and the training 
process takes around 50-60 minutes depending on early stopping. 

 
 

 
Figure 17. STTFN prediction results in regards with the input data: (1) E1 ECOSTRESS, (2) M1 MODIS, 

(3) Predicted STTFN E2 ECOSTRESS, (4) Predicted DTC M2 MODIS, (5) E3 ECOSTRESS, (6) M3 
MODIS. 
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Figure 18. STTFN prediction results (1) in regards E2 ECOSTRESS Ground Truth Data (2). 

 

The mapped output prediction of the STTFN in the experimental study area is depicted along with the 
input data of the spatiotemporal model, E1, M1, M2, E3, M3, in Figure 17.   In Figure 18 the predicted 
output is compared with the ground truth image E2. 

 
Issues & Next Steps: 
 
In regards with the process of Spatiotemporal Fusion of ECOSTRSS and MODIS LST thermal images, 
through a Deep Learning Framework application over the STTFN architecture, the evaluated accuracy 
results were found to be comparable and within the acceptable error range defined by the relevant 
thermal image fusion literature (ESTARFM, STTFN, StfNet methods), in terms of RMSE and SSIM 
metrics. However, the mapping and localization of error in the conducted study, indicated that some 
minor further improvement could be possible.  Error observations are somehow related to the blocky 
artifacts issue of the Multiscale CNN, which was highly improved but not fully addressed. Besides the 
emergence of blocky artifacts in images produced by CNNs and patch training is a general issue by itself 
in Deep Learning research as noted by Xu et al. (2022) and Huang et al. (2019), where only general 
guidelines are provided and frequently the solutions are found in a heuristic manner. 
 

● A further next step, in a STTFN algorithm development would be to test its performance in a 
more extended spatiotemporal context, involving a greater land cover variability, as well as a 
seasonal assessment study to verify the stability of the accuracy across the year timeframe. 

 
Some more aspects that could be evaluated in a 2nd iteration might include: 
 

● to test the sensitivity of the STTFN model to variable cloudy conditions.  The requirement of 
cloudless conditions for the fused scene, has a huge impact on the available data that could be 
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used and benefit from the fusion capabilities. It is important to assess to what extent cloud 
presence deteriorates the fusion result locally (pixelwise regarding the cloud mask) and focally 
(on cell locations within a neighborhood from the cloud mask). 

● to test the sensitivity of the STTFN model to different local time of image acquisitions. While the 
DTC model is a highly useful tool in thermal data, by itself, it introduces to a greater or lesser 
extent some inherent error to the data used for training. Even more restrictions about cloud 
coverage are imposed for all the diurnal time-frames, which makes it even harder to find data 
with cloudless conditions on all 4 daily acquisitions. For that reason, it would be great knowledge 
to infer to what extent the temporal inconsistency of ECOSTRESS imagery affects the fusion 
result. 

 
3.8.1. Spatiotemporal Thermal Data Fusion - Update iteration 

 
Following the first version of the deliverable "D7 - Algorithm Theoretical Base Document and Product 
Specifications", further modifications and tests were carried out in an effort to upgrade the performance 
and accuracy of the Spatiotemporal Thermal Data Fusion results. 

As demonstrated by the preceding approaches presented in the sections above, despite all the 
satisfactory performance and accuracy of the STTFN model, issues arose that were related to the 
feasibility of this methodology to be implemented as an operational service. The experimental design 
was carried out for zero cloud cover conditions, and by applying a temporal normalization of the 
participating MODIS LST images to the target time of the ECOSTRESS LST image acquisition, that was 
carried out by using a DTC model. The prior assumption is a condition not often encountered at the 
operational level, as cloud cover is an uncontrollable parameter that is a hurdle, and is often 
encountered in Thermal Remote Sensing. Moreover, the presence of cloud cover makes it impossible to 
calibrate the DTC model. If for a certain location, any one of the 4 MODIS LST daily exposures shows 
cloud cover, then for that pixel it is not possible to calculate the model coefficients, resulting in a no data 
value during prediction. For these reasons, it was decided to modify the experiment to test the STTFN 
under random cloud cover conditions, and at non-normalized time and synchronized hours of thermal 
data. The experimental design for the application of STTFN on this 2nd iteration remained on the same 
Area of Interest, but regarded thermal data pairs from different dates. The data of the experimental case 
study are listed in the following table (Table TTT21). 

 
Table TTT21. Experimental case study image dataset for STTFN. 

LST Image Usage Sensor Date Local Solar 
Time 

E1 Training-Prediction ECOSTRESS 27/01/2022 12.11 

M1 Training-Prediction MODIS 27/01/2022 13.2 
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E2 Ground Truth for 
Evaluation ECOSTRESS 06/03/2022            20.96 

M2 Training-Prediction MODIS 06/03/2022 21.8 

E3 Training-Prediction ECOSTRESS 26/07/2022 13.12 

M3 Training-Prediction MODIS 26/07/2022 14.1 

     

<E2> Predicted LST STFN 
ECOSTRESS 06/03/2022 21.8 

 

 

● Area Coverage:  100x100 km 

● LST image pairs were resampled to common grid system with the Nearest Neighbor method 

● Patching: Training data was fed into the STTFN as cropped patches of 32X32 pixels  

● Image Dimensions (pixels):  1416 X 1416 

● Regarding quantitative evaluation this was performed by comparison with the available E2 
image, which was kept aside for that particular reason. The mean absolute error (MAE), root 
mean square error (RMSE) and structural similarity (SSIM) were calculated using the 
ECOSTRESS high spatial resolution image at the target date as ground truth reference. 

For the implementation the setup of the STTFN model was not modified from its initial specifications 
which included : 

● Patching:  size 32 and stride 8 pixels 
● Image dimensions: resized to 1408 X 1408 
● Total number of training patches: 29926 
● Data Split: 80 % for training, 20 % for validation 
● Early stopping and Dropout Layers modes were used in order to prevent overfitting 
● In every epoch, the best model weights were saved  
● Usage of custom Keras generator to scale data to [0,1] range, perform the augmentation, and 

return a batch of data, with a size of 16 
● The model was trained on an NVIDIA GeForce GTX1650 with 4GB memory and the training 

process takes around 50-60 minutes depending on early stopping. 

 

The thermal data inputs to the STTFN, ECOSTRESS  and MODIS LST, as set for the 2nd experimental 
setup are presented on figure XXX19. Since MODIS LST data were provided preprocessed and masked 
from the API, spatial interpolation had to be performed in order to fill the no data cells at the cloudy 
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locations. Cloudy coverage was interpolated, with a bilinear spline to the radiometric value of the most 
proximal pixels, at the boundaries of the cloud mask. LST values at those spots lie between the “real” 
LST and the much lower LST values mapped at the center of the cloud. This introduced some mismatch 
between the ECOSTRESS and MODIS cloudy pixel values. 

 

 
 

Figure XXX19. data inputs to the STTFN, ECOSTRESS  and MODIS LST, as set for the 2nd 
experimental setup. 
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Figure XXX20. STTFN Validation, Ground Truth ECOSTRESS LST image on E2 time (left) and 
STTFN Prediction LST, as inferred  from the 2nd experimental setup. 

 
The prediction of the STTFN for the intermediate date (Figure XXX20) yielded unsatisfactory results, 
in terms of radiometric accuracy and spatial feature reconstruction. Evaluation metrics of this 2nd 
experimental study case for the predicted fused image were: 

● RMSE: 6.410 

● MAE: 5.222 

● SSIM:  0.898 

The absolute error between STTFN prediction and the E2 Ground truth was further analyzed over its 
value distribution and its spatial distribution. The absolute error histogram is given in figure XXX21. 
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Figure XXX21. STTFN absolute error histogram. 2nd experimental setup. 
For the spatial analysis, a union (Boolean OR) of the ECOSTRESS and MODIS cloud masks was created 
to be used as a categorical feature for the zonal analysis of error. Zonal Statistics of Absolute Error was 
calculated for cloudy and non cloudy coverage and are presented on the following table (TTT22). It is 
evident that the average absolute error in clouded pixels is much higher with a larger variance. 

Table TTT22. Zonal Statistics of STTFN Absolute Error in cloudy and non cloudy coverage. 

Coverage Count Minimum Maximum Average St. Deviation 

Cloudy 347263 0 19.63 8.47 6.12 

Non Cloudy 1590882 0 9.87 3.56 2.12 

 

Even more than the low global metrics, the confirmation about the reduced capability of STTFN for 
thermal data fusion on cloudy conditions also becomes evident from the qualitative evaluation of the 
result. First of all, it is obvious that the fused result exhibits artifacts related to the cloudy coverage on 
the dates before and after the prediction. The spatial pattern of the artifacts introduced in the prediction 
is clearly similar to the cloudy coverage present in the E1,M1, and E3, M3, images. The temporal 
mismatch between MODIS and ECOSTRESS images in the training pairs is very likely to contribute to 
the radiometric error, but this hypothesis is not quantifiable since in all three pairs the time difference 
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is relatively small, and especially since in the prediction date we are in the evening hours, during which 
there is slow thermal attenuation on the DTC curve, and thus the temperature deviations for an hour 
time difference are expected to be even smaller. 

The conclusions derived from the experimental design carried out confirm the working hypothesis that 
the Spatiotemporal Thermal Fusion tools developed can only produce reliable results under conditions 
of non cloudy coverage. In cases where the temporal difference between MODIS and ECOSTRESS 
images is large, it is necessary to preprocess the data via DTC Curve Fitting for the temporal 
normalization of the inputs. In this case the non-cloudy conditions must hold for all 4 MODIS images. 
From the experience gained with data acquisition and preprocessing of thermal data, it became clear 
that the requirement for zero cloud cover conditions, dramatically limits the available images that could 
be used. The application training and prediction of thermal data with STTFN, could be operationally 
done by user selection of those Areas of Interest that have non cloudy conditions. In this case the size 
of this area would be provided by the spatial intersection of non cloudy AOIs, through all available days 
and will be relatively small. This would have an effect on the available patches for training, and the 
overall accuracy of the algorithm. 

4. Hyperspectral Data Fusion 
 

4.1. Objectives 

Hyperspectral and multispectral images data fusion is a powerful technique in the field of remote 
sensing providing a comprehensive view of the Earth’s surface through the combination of the 
advantages of different spectral and spatial resolutions. Hyperspectral sensors excel in capturing images 
with detailed spectral information across multiple narrow bands, which allows for exact 
characterization of materials and processes. However, the spatial resolution is sacrificed, which poses 
an implication in their applicability in tasks that require finer spatial details. Multispectral sensors, on 
the other hand, provide imagery with a higher spatial resolution but with fewer spectral bands, which 
limits their ability to distinguish between materials with small spectral differences. 

The fusion of hyperspectral and multispectral data targets on addressing these limitations by integrating 
the detailed spectral information of hyperspectral imagery with the high spatial resolution of 
multispectral images. Through this approach, the combined spectral information of hyperspectral data 
with the spatial information of multispectral data results in a fused dataset that provides both high 
spectral and spatial resolution. Therefore, more precise and detailed insights regarding land cover, 
vegetation health, environmental conditions and a variety of applications are provided. 

Within AFRI4Cast, the primary objective of hyperspectral-multispectral data fusion was the 
enhancement of the PRISMA hyperspectral images spatial resolution by using higher resolution 
multispectral imagery provided by Sentinel-2 MSI. By fusing these datasets following different 
methods, such as hyper pansharpening and deep learning fusion, AFRI4Cast targets on creating 
enhanced hyperspectral images that are able to provide accurate vegetation indices and canopy 
biophysical parameters at a finer spatial scale as well as contribute to crop disease models. 
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4.2. Data Products 

The current chapter presents the Earth Observation (EO) hyperspectral and multispectral data products 
that are used within AFRI4Cast as inputs to the data processing pipelines that regard the hyperspectral/ 
multispectral data fusion.  PRISMA Level 2D (L2D) as well as Sentinel-2 MSI Level 2A data products 
are mentioned in this chapter. For more detailed information, please refer to the Deliverable D3 “State 
of the art review report on analysis methods and algorithms,” Chapter 3. “Input data products for 
AFRI4Cast EO services”. 

 
● PRISMA Level 2D 

 
PRISMA Images Features 
 

In the terms of AFRI4Cast, PRISMA Level 2D hyperspectral imagery at a spatial resolution of 30m is 
used in order to perform the hyperspectral/ multispectral data fusion pipeline. Each PRISMA image 
consists of 239 spectral bands ranging from 400 to 2500 nm.  

PRISMA images are comprised of three data cubes: 

● The VNIR Cube containing 66 spectral bands in the spectral range from 400 to 1010 nm, 

● the SWIR Cube containing 173 spectral bands in the spectral range from 920 to 2500 nm and 

● the PAN Cube containing 1 panchromatic band at 5m spatial resolution 

PRISMA images are distributed via ASI’s PRISMA platform and they are delivered in HDF-EOS5 format 
(.he5). Each data product is divided in three data cubes which can be accessed via the following paths 
in the HDF5 file: 

● VNIR Cube: ‘/HDFEOS/SWATHS/PRS_L2D_HCO/Data Fields/VNIR_Cube'  

● SWIR Cube: ‘/HDFEOS/SWATHS/PRS_L2D_HCO/Data Fields/SWIR_Cube'  

● PAN Cube: ‘/HDFEOS/SWATHS/PRS_L2D_PCO/Data Fields/PAN_Cube' 

 

Based on the spectral range of bands that are contained in the VNIR and SWIR cubes, an overlap 
between these two cubes is observed. VNIR and SWIR cubes overlap is noticed at around 943.35 to 
979.22 nm (Table 11.). 

 
Table 15. VNIR and SWIR PRISMA cubes overlapping spectral areas – bands. 

VNIR Cube bands (nm) SWIR Cube bands (nm) 

923.95 943.35 

934.11 951.40 
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944.62 959.97 

956.27 969.84 

967.02 979.22 

977.36 988.91 

 998.90 

 1008.64 

 
 
Data Scaling 
 

Concerning the PRISMA data scaling aspect, all data cubes are stored in the L2D products as Digital 
Numbers (DN) with a uint16 pixel depth. In order for a data scaling to be performed and a conversion 
from uint16 to Float32 data type to take place, the following conversion formula has to be applied 
(Source: ASI, “PRISMA ATBD”, 14/12/21). Through this formula, the cubes’ data are converted from 
Uint16 to Float32 reflectance units. 

 

𝑋𝑋𝑋 = 𝐿2𝑆𝑐𝑎𝑙𝑒𝑋𝑋𝑋𝑀𝑖𝑛 +
𝑋𝑋𝑋!" ∗ 𝐿2𝑆𝑐𝑎𝑙𝑒𝑋𝑋𝑋𝑀𝑎𝑥 − 𝐿2𝑆𝑐𝑎𝑙𝑒𝑋𝑋𝑋𝑀𝑖𝑛

65535
	

 

where <XXX> refers to “PAN”, “VNIR” or “SWIR” dataset. 

The conversion/ scaling factors are apparent in the metadata in the tags:  

 

L2ScalePanMax 

L2ScalePanMin 

L2ScaleSwirMax 

L2ScaleSwirMin 

L2ScaleVnirMax 

L2ScaleVnirMin 

 

A significant finding that was observed while working with PRISMA data products was that conversion/ 
scaling factors were found to be inconsistent throughout all PRISMA acquisitions. The inconsistency of 
PRISMA scaling factors posed an implication on the fully automated methodology approach, because 
each separate image acquisition should have been scaled using its own individual scaling factors, which 
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had to be retrieved beforehand. Moreover, it was noticed that the cloud coverage information provided 
by PRISMA images metadata is not indicative of the images’ actual cloud coverage. Thus, the evaluation 
of PRISMA acquisitions based on their cloud coverage was carried out through visual inspection, since 
a quality control layer is not available. 

 

● Sentinel-2 MSI Level 2A 
 
Sentinel-2 MSI Level 2A data products are part of the AFRI4Cast’s data fusion component, concerning 
the aspect of PRISMA spatial enhancement through the data fusion approach of hyperspectral and 
multispectral imagery. For more detailed information regarding this data product, please refer to the 
Deliverable D3, Chapter “3. Input data products for AFRI4Cast EO services”. 

 

4.3. Data Processing Pipelines 

 
The hyperspectral/ multispectral data processing and fusion pipelines are depicted in Figure 19. 
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Figure 19. Hyperspectral/ multispectral data processing and fusion pipelines. 

 

4.4. Hyperspectral – Multispectral Image Acquisition 

 
Approach: 
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In this chapter, the ways of acquiring the images to be used for the spatial enhancement pipeline of 
hyperspectral (HS) imagery through the data fusion of hyperspectral and multispectral (MS) images 
within AFRI4Cast are presented. Image availability of hyperspectral and multispectral imagery as well 
as the examination of data quality in the sense of cloud coverage in order to form HS/ MS image pairs 
to serve as input in the data fusion approach are discussed. 

 
Prisma L2D 
 

In the terms of AFRI4Cast, PRISMA Level 2D imagery is acquired via ASI’s PRISMA Platform 
(https://prisma.asi.it) through the tool “Mission Planning Operation”. That approach was adopted due 
to the lack of PRISMA observations in the platform’s archive over the study sites, thus acquisition 
requests had to be submitted.  

The bare minimum settings for the submission of a new PRISMA acquisition through the “Mission 
Planning Operation” tool are specified by: 

1. the latitude and longitude of the image center (decimal degrees), 

2. the maximum permitted percentage of cloud coverage (%)  

3. the minimum and maximum Look Angle  

4. the minimum and maximum Sun Zenith Angle 

5. the type of product which shall be generated at image acquisition completion. 

 
The acquired images for the placed requests over the study sites during 2023 – 2024 present a sparse 
but rather adequate availability.  

Further on, their quality in terms of cloud coverage was examined. It was observed that the images’ 
metadata don’t provide reliable information regarding the cloud coverage and a quality control layer is 
not provided. Consequently, the quality was evaluated through visual inspection. 

Finally, four PRISMA images during 2023 were selected as optimal for our studies. The list of acquired 
images along with the selected ones as optimal acquisitions (marked with tick symbol) are presented in 
Table 16. 

 
Sentinel-2 MSI L2A 
 

Sentinel-2 MSI Level 2A imagery was retrieved via EODAG for the same or close date to each optimal 
PRISMA image (based on their cloud coverage evaluation). A custom developed Python script, that uses 
the EODAG Python package capabilities and is pre-configured to work with CreoDIAS, Copernicus 
Dataspace Ecosystem and ONDA DIAS API, is employed in order to explore the availability and retrieve 
this data product.  

Sentinel-2 MSI L2A imagery quality, regarding the cloud coverage categories, was examined through 
the SCL layer provided along with the specific data product. 
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Table 16. PRISMA L2D available acquisitions over the study sites and corresponding Sentinel-2 MSI 
L2A image availability on the same or close dates to good quality PRISMA images. 

Order 
No 

Date of 
Acquisiti

on 

Cent
er 
 Y 

Cent
er  
X 

Study 
Site 

Cover
age 

Product Name 
Qualit

y 
Check 

S2 
Availabil

ity  
and 
Date 

S2 
Quali

ty 
Chec

k 

54897 26/05/2020 0,05 35,97 Perkerr
a 

PRS_L2D_STD_202005260808
33_20200526080837_0001\ ✓ ✓ (26/05) 

Good 
Qualit

y 

54902 02/06/23 -0,23 35,95 Nakuru PRS_L2D_STD_202306020808
57_20230602080902_0001\ X   

54903 22/08/2023 -0,23 35,95 Nakuru PRS_L2D_STD_202308220805
44_20230822080548_0001\ ✓ ✓ (24/08) 

Good 
Qualit

y 

54708 28/08/2023 0,47 36,04 Perkerr
a 

PRS_L2D_STD_202308280808
55_20230828080859_0001\ ✓ ✓ (29/08) 

Good 
Qualit

y 

20386 07/10/23 -0,70 37,29 Mwea PRS_L2D_STD_202310070759
08_20231007075912_0001\ X   

20382 08/10/23 -0,13 34,90 Ahero PRS_L2D_STD_202310080815
39_20231008081544_0001\ X   

19869 13/10/2023 0,47 36,03 Perkerra PRS_L2D_STD_202310130802
18_20231013080223_0001\ X   

54899 14/10/2023 0,03 34,84 Ahero PRS_L2D_STD_202310140819
00_20231014081905_0001\ X   

54901 14/10/2023 -0,22 34,78 Ahero PRS_L2D_STD_202310140819
05_20231014081909_0001\ ✓ ✓ (13/10) 

Good 
Qualit

y 

20389 25/10/2023 -0,21 35,95 Nakuru PRS_L2D_STD_202310250808
57_20231025080901_0001\ X   

20387 06/11/23 -0,13 34,90 Ahero PRS_L2D_STD_202311060815
53_20231106081557_0001\ X   

21572 08/01/24 -0,11 34,90 Ahero PRS_L2D_STD_202401080802
24_20240108080228_0001\ X   

21576 19/01/2024 -0,72 37,31 Mwea PRS_L2D_STD_202401190752
32_20240119075237_0001\ X ✓ (23/01) 

Mediu
m 

Quality 
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21573 20/01/2024 0,46 36,04 Perkerra PRS_L2D_STD_202401200808
48_20240120080852_0001\ X   

 
 
 
 
PRISMA / Sentinel-2 Image Pairs 
 

In order to fulfill the hyperspectral/multispectral data fusion pipeline, the possible PRISMA/ Sentinel-
2 image pairs with the minimum flaws and cloud coverage were examined. In order to realize that, 
Sentinel-2 images were acquired in the same or near dates to those that PRISMA images evaluated as 
optimal exist (Table 16.).  

The HS/ MS image pairs were further examined in both ways: 

a. PRISMA L2D images underwent the bad bands evaluation process, as it is described in detail in 
Chapter 4.6.2. 

b. Sentinel-2 MSI L2A images were evaluated via the SCL layer in the area that is within the swath 
of the corresponding PRISMA image on a specific date. The presence of clouds, dark pixels, 
shadows and unclassified pixels was determined. 

These possible PRISMA/ Sentinel-2 image pairs that the optimal quality coincided on both images were 
observed on 26/05/2020, 22/08/2023, 28/08/2023 and 14/10/2023. These image pairs are also 
presented on Figures 20 - 23 and Table 16. (marked with bold font and orange selection lines). 

 

 
Figure 20. PRISMA and Sentinel-2 SCL images on 26/05/2020. 
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Figure 21. PRISMA and Sentinel-2 SCL images on 22/08/2020. 

 
 

 
Figure 22. PRISMA image on 22/08/2023 and Sentinel-2 SCL image on 24/08/2023. 
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Figure 23. PRISMA image on 14/10/2023 and Sentinel-2 SCL image on 13/10/2023. 

 
 

The image pair on the 26/05/2020 was chosen to proceed with. That was due to the 
coincidence of both PRISMA and Sentinel-2 good quality images on that specific date. 

 
 
Issues and Next Steps: 
 
Upon assessing our activities, some issues have emerged: 

● The lack of an API for automatically obtaining PRISMA images poses a significant challenge, 
especially within the context of developing automated services. The EO processing pipelines 
concerning the hyperspectral/ multispectral data fusion could become interrupted or inefficient 
as a result of this absence. 

● During the PRISMA images evaluation in terms of cloud coverage, a discrepancy between the 
information provided by PRISMA metadata and the visual inspection results was observed. It 
was concluded that the PRISMA metadata are not a reliable source of information for the 
evaluation of cloud coverage. Therefore, as a quality control layer is not provided, the PRISMA 
acquisitions evaluation was performed via visual inspection. 

 

4.5. Image Preprocessing 

 
4.5.1. Multispectral Data 
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Challenge: 
 
For the realization of a HS-MS Fusion scheme, the use of a Sentinel 2 MS image as the high spatial 
resolution component was considered. As reported in deliverable D3 “State-of-the-art review report on 
the EO analysis methods and algorithms”, these images cover the Visible, Red Edge, NIR and SWIR 
regions of the spectrum, with 11 channels, out of which, those related to the Blue, Green, Red and Near-
Infrared regions are mapped at a spatial resolution of 10m, while the Red Edge and Short Wave Infrared 
regions with 3 and 2 channels respectively have a spatial resolution of 20m. A reasonable prerequisite 
for the fusion of S2 and PRISMA images was the specification of the spatial resolution of the final HS-
MS Fusion products which meant that all S2 MSI layers should be processed to a 10m resolution. 
 

Approach: 

The full exploitation of the potential provided by multispectral data implied the downscaling to a spatial 
resolution of 10m. The existence of 10 m bands covering the same scene offers excellent opportunities 
for downscaling the 20 m bands to 10 m spatial resolution to provide more detailed spatial information. 
As a result, the need for a S2 bands fusion, by spatial downscaling of the Red Edge and SWIR channels 
to the specified pixel size of VIS-NIR, was therefore raised. At this point, the application of an image 
fusion algorithm to the 10 m and 20 m S2 channels, in order to obtain a 11 multiband MS image with 
the highest spatial resolution which would be used to bring the spatial resolution of the PRISMA image 
to 10 m, was the followed approach. The approach adopted was based on the operational feasibility of 
the fusion scheme, and the computational efficiency of the algorithm, since the design assumes its 
application to entire S2 MSI tiles, which imposes a high computational burden on a task that is merely 
a sub-process MS Fusion. 

 

Methodology: 

As to the design of the S2 data fusion problem, it involved four fine spatial resolution bands at distinct, 
narrow and localized parts of the spectrum, which is different to, and more complex than, the common 
pan-sharpening fusion problem which involves only one fine band that however covers a much wider 
spectral range. Following the work described by Wang et al. (2016) and Selva et al. (2015), two fusion 
schemes were proposed as alternatives for the panchromatic type of fusion. The synthesized and the 
selected band scheme. The synthesized band variation aims to compute a single fine band as a weighted 
average of the initial high resolution S2 bands, where the weight coefficients are inferred by a 
multilinear regression model between the considered 20m band and the, spatially degraded versions of 
the four 10m bands. On the other hand, the selected band scheme aims to use the mostly correlated 10m 
band as the panchromatic image alternative. Out of these two schemes, the latter one, i.e. the selected 
band fusion scheme was finally decided, as the least complex method out of the two. The rationale of 
this approach was the fact that the Red Edge and SWIR band stacks are located on either side of the 
NIR image spectral range, and thus they are expected to have a very high Pearson correlation. 

For the main S2 image fusion part, a hyper-sharpening (HP) adaptation of the Modulation Transfer 
Function (MTF) – Gaussian Laplacian Pyramid (GLP), belonging to the MRA class of methods was 
chosen because of its computational efficiency and of the good fusion performance experienced on real 
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S2 data. In the MRA approach, spatial detail is injected by multiresolution decomposition of the fine 
band by using high pass filtering as proposed by Chavez et al. (1991).  

The S2 algorithm evaluation was performed in a quantitative manner, following the principles of Wald’s 
protocol, according to which, in image fusion, it is important that any sharpened image, once degraded 
to its original spatial resolution, should be as close as possible to the original image. The same principles 
were also considered and applied on the initialization of the selected band scheme, for computing the 
correlation matrix between 10m and 10m bands. The quantitative metrics, also computed on a degraded 
reference image were, the Peak Signal to Noise Ratio (PSNR), the Structural Similarity Metric (SSIM), 
and the Spectral Angle Mapper (SAM). PSNR is given by the ratio of gray level numbers in the image to 
the corresponding pixels in the source input image and combined output image. A higher value of PSNR 
denotes better fusion quality. SSIM is a spatial performance fusion metric to compare the pixel intensity 
local patterns in the source image and fused output image. If the SSIM value is close to 1, that means 
higher spatial similarity between the source image and fused image. Spectral Angle Mapper (SAM) is a 
cosine distance metric in the image feature space of the MS and Pan channels, that denotes the spectral 
radiometric distortion of the fused result.  If the SAM value is zero, that means “no spectral distortion". 

 

Experimental Results: 

The data processing pipeline for the S2 fusion involved the following steps: 

● Extraction of Sentinel 2 MSI bands and conversion to BOA reflectance values 

● Degradation of VIS-NIR 10m bands to a spatial resolution of 20m. This step was performed in 
order to compute the Pearson correlation matrix between the MSI channels, in a pixel wise 
manner. 2 degradation methods were tested and were evaluated in a qualitative way. A weighted 
average resampling, as well as a variation of it, in which the 10m bands are initially smoothed 
by a Gaussian Low Pass filter, and then resampled to their average. The degradation process is 
controlled by the sensor's Point Spread Function (PSF) which in the latter variation, is simulated 
by a Gaussian kernel filter, of 12 pixels radius. The filter’s Standard Deviation parameter was 
calculated for each HR band to be degraded, according to the following formula 

𝑆𝐷	 = 	𝑅 ⋅ 8
−2 ⋅ 𝑙𝑛(𝑀𝑇𝐹)

𝜋2
 

where R the degradation scale factor (equal to 2) and MTF the Modulation Transfer Function of 
Sentinel 2 MSI, provided for each band in the table that follows ( TTT23). 

Table TTT23. Modulation Transfer Function of S2 MSI for the simulation of PSF through Gaussian 
filtering. 

 B2 B3 B4 B8 

 VIS NIR 

MTF 0.26 0.28 0.24 0.26 
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● Layer Stacking of the 20m bands 

● Computation of the Bands Correlation. The produced Pearson Correlation Matrix for the 
26/05/2020 S2 MSI image is given below (Table 17). 

 

Table 17. Pearson correlation matrix of S2 MSI layer stack. VIS-Red Edge-NIR-SWIR bands. 

r B2 B3 B4 B5 B6 B7 B8 B8A B11 B12 

 VIS Red Edge NIR SWIR 

B2 1.000 0.996 0.982 0.984 0.907 0.890 0.889 0.881 0.920 0.923 

B3 0.996 1.000 0.985 0.991 0.918 0.903 0.901 0.893 0.925 0.924 

B4 0.982 0.985 1.000 0.984 0.866 0.846 0.845 0.836 0.915 0.938 

B5 0.984 0.991 0.984 1.000 0.938 0.923 0.921 0.915 0.957 0.956 

B6 0.907 0.918 0.866 0.938 1.000 0.998 0.998 0.997 0.947 0.900 

B7 0.890 0.903 0.846 0.923 0.998 1.000 0.999 0.999 0.937 0.885 

B8 0.889 0.901 0.845 0.921 0.998 0.999 1.000 0.999 0.940 0.887 

B8A 0.881 0.893 0.836 0.915 0.997 0.999 0.999 1.000 0.939 0.884 

B11 0.920 0.925 0.915 0.957 0.947 0.937 0.940 0.939 1.000 0.986 

B12 0.923 0.924 0.938 0.956 0.900 0.885 0.887 0.884 0.986 1.000 

 

The correlation results indicated the following LR-HR pairs 

❖ B5 (Red Edge 1): B4 (Red) 

❖ B6 (Red Edge 2): B8 (NIR broadband) 

❖ B7 (Red Edge 3): B8 (NIR broadband) 

❖ B11 (SWIR1): B8 (NIR broadband) 

❖ B12 (SWIR2): B4 (Red) 

 

● Data Normalization. Each image in the LR-HR pairs was normalized with the use of the Linear 
Transformation method of data scaling from integer (uint16) to float (float32). From image 
metadata, for all S2 bands: 
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<BOA_QUANTIFICATION_VALUE unit="none">10000</BOA_QUANTIFICATION_VALUE> 
<BOA_ADD_OFFSET band_id="1:12">-1000</BOA_ADD_OFFSET> 

 
thus, going from DN (uint16) to BOA (float32) the following transformation was applied: 

 

𝐵𝑂𝐴 =
𝐷𝑁 + 𝑂𝐹𝐹𝑆𝐸𝑇

𝑄𝑈𝐴𝑁𝑇𝐼𝐹𝐼𝐶𝐴𝑇𝐼𝑂𝑁𝑉𝐴𝐿𝑈𝐸	

 

● Reference image creation for the application the S2 Fusion scheme and the subsequent 
quantitative evaluation. HR-LR image pairs were initially smoothed with Gaussian Kernel 
convolution filters and then degraded by a factor of 2. 

● Set the parameters for High Pass 2D Convolution filtering.  For the HP adaptation of the MTF-
GLP algorithm, a kaiser kernel window was used, with default values (beta=0.5). 

● Application of the HP – MTF – GLP fusion algorithm to the degraded image pairs for the 
calculation of the quantitative metrics 

● Application of the HP – MTF – GLP fusion algorithm to the original HR-LR image pairs for the 
downscaling of LR to 10m spatial resolution. 

 
The summary of the quantitative evaluation of the S2 fusion result is presented on the following table 
(Table 18): 

 

Table 18. HP- MTF-GLP algorithm quantitative evaluation metrics. 

HP-MTF-GLP - Evaluation Metrics 

 PSNR SSIM SAM 

B5 47.48 0.987 0.37 

B6 43.82 0.975 0.39 

B7 42.15 0.966 0.39 

B11 38.25 0.922 0.39 

B12 45.54 0.982 0.37 
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A complementary qualitative evaluation could be assessed by the observation and analysis of Reference 
and Fused images visually. Some illustrative examples of this assessment of the pilot experiment sub 
regions can be viewed on Figure 24 (a,b,c,d,e,f). 
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(a) 
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(b) 

(c) 
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(d) 

Figure 24. Qualitative evaluation of the S2 fused result. Comparison of RGB=(B12,B7,B5) pseudocolor 
composite of SWIR- Red Edge bands, locally histogram stretched. Selected sites (a,b,c,d) presented, 

along with SCL mask and basemap. 
 

A spectral signature sampling has been implemented to the Reference and Fused images, in a stratified 
manned dictated by the Sentinel 2 MSI Quality Scene Classification Layer SCL, for the qualitative 
assessment of spectral distortion, over the major land cover classes of Barren Land, Vegetation, and 
Water. The radiometric deviation between the two images (Figures 25-27), over the Red Edge and SWIR 
bands is a subjective but nevertheless clear indicator of the spectral alteration (over/under estimation) 
introduced by the S2 fusion. 
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Figure 25. Averaged Spectral Signature of Barren Land for Fused and Reference S2 MSI image. 

 

 
Figure 26. Averaged Spectral Signature of Vegetation for Fused and Reference S2 MSI image. 
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Figure 27. Averaged Spectral Signature of Water for Fused and Reference S2 MSI image. 

 

The observed spectral disambiguation is expressed as an average relative error of radiometric BOA 
reflectance, on the following summary table. Relative errors expressed as % percentage are summarized 
for each Red Edge and SWIR band, over the selected SCL classes. 

 

Table 19. Average Relative Error between Reference and Fused S2 Image spectral signatures, for the 
SCL classes of Barren Land, Vegetation, and Water. 

 Average Relative Error of SCL spectral signatures (%) 

 B5 – Red Edge 1 B6 – Red 
Edge 2 

B7 – Red 
Edge 3 

B11 – 
SWIR 1 B12 – SWIR 2 

Barren 16.56 0.79 -1.19 7.01 -0.82 

Vegetatio
n 28.35 -5.34 -8.01 15.26 18.21 

Water 16.54 73.13 73.27 716.39 769.25 

 

The overall evaluation of the procedure, a combination of qualitative and quantitative assessments, 
provided the following conclusions about the S2 Fusion preprocessing: 

● The performance of the algorithm on the spatial aspects of the fused image was quite satisfying, 
something that was supported both by visual observation and the SSIM quantitative assessment. 
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The lowest value of SSIM was observed on the SWIR 1 band, which could partially be related to 
the relatively lower correlation value between the SWIR1 and NIR bands.  

● On the spectral aspects of S2 fusion, the performance was suboptimal. Spectral distortion is an 
inevitable fact of image fusion, that is pronounced on the bands, whose spectral region is not 
covered by the HR image or it is least correlated with. That was also a fact during the evaluation 
of S2 Fusion with a selected band scheme, where high deviation was observed, especially for B5 
(Red Edge) and the SWIR bands. The drawn conclusions are supported by a high SAM value, as 
well as by the evaluation of the relative spectral error, especially on both SWIR bands. 

 
Issues and Next Steps: 
 
During the S2 band fusion procedure, no significant issues were observed at the functional level as both 
fusion schemes were easily recreated on algorithm code. However, there were performance issues which 
need further improvement since the spectral distortions observed are expected to degrade the overall 
performance of HS-MS Fusion to some degree. For this reason, the following next steps are proposed 
in the S2 band fusion part: 

● Application of the synthesized pan image fusion scheme. This approach, while involving more 
analysis and evaluation steps, like the assessment of a regression model for the production of a 
synthetic “pan” image that spans the whole spectral range of interest, could provide more valid 
spectral information to the fusion, and thus enhance the relevant metrics    

 

4.5.1.1. S2 Data Fusion - Update iteration 
 

In the period following the first version of the deliverable "D7 - Algorithm Theoretical Base Document 
and Product Specifications", further modifications and tests were carried out in an attempt to upgrade 
the performance and fidelity of the Sentinel 2 Band Fusion to 10 m spatial resolution results. As was 
evident from the preceding approaches presented so far, there was the issue of spectral distortions 
observed in the Red Edge and SWIR channels, with different strengths per land cover type. The reasons 
why it was considered important to try to improve the characteristics of the Fused image are the 
potential propagation of spectral errors to the overall HS-MS Fusion accuracy, but not only. The 
technique itself for Sentinel 2 Band Fusion with pansharpening methods is useful for extracting 
vegetation indices and Biophysical parameters, sensitive to the Red Edge or SWIR spectrum, in 10 m 
spatial resolution, and therefore an effort to improve it is of standalone value. 

In terms of the methodological framework, there was no significant difference in terms of the 
algorithmic part.  The approach of the HP-MTF-GLP algorithm for pansharpening of Multispectral 
images has comparative advantages over Deep Learning Fusion, because it is simpler to implement, 
does not require data for supervised learning, is faster and scalable. However, a different method was 
decided to create the "pseudo panchromatic" image band required to implement the algorithm. In order 
to sharpen a Sentinel-2A image, a specific multispectral band should be defined as an optimal 
panchromatic band with a 10 m spatial resolution. 
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During the preceding analysis a selected band scheme had been applied which selects a fine band from 
the VIS - NIR for each coarse band, which is determined as the one with the largest correlation with the 
visited coarse band. As a next step towards the enhancement of the Sentinel 2 Fusion, the application 
of the synthesized pan image fusion scheme was considered. The synthesized band scheme synthesizes 
a "pseudo panchromatic" image (i.e., fine multispectral image), as a weighted linear combination of all 
high resolution multispectral bands.This approach, while involving more analysis and evaluation steps, 
like the assessment of a multi - linear regression model for the production of a synthetic "pan" image 
that spans the whole spectral range of interest, could provide more valid spectral information to the 
fusion, and thus enhance the relevant metrics.   

For the implementation of the synthesized band scheme, a stratified random sampling approach was 
applied on the Sentinel 2 image, fetching 10000 samples, or 1/1000 of the image pixels. The 10 m bands 
of VIS-NIR channels were degraded to a spatial resolution of 20m. The bands were initially smoothed 
by a Gaussian Low Pass filter, and then resampled 2 by 2 pixel average.  A linear model for each band 
from the Red Edge and SWIR spectral regions was trained and cross validated with a 2 fold data 
partitions. The evaluation of the synthetic pan image models is presented for each 20m band , on the 
tables that follow  (TTT24 to TTT33). 

Table TTT24. Multilinear Regression Model  for Sentinel 2 Red Edge 1 channel (B5)- Model 
Coefficients. 

 Red Edge 1 Panchromatic regression model - Model Coefficients 

 Coefficient r R2 Adjusted R2 Std Error t -test 

B2 Blue -0.678 -0.646 0.417 0.417 0.002 -262.648 

B3 Green 1.019 0.617 0.381 0.381 0.004 243.356 

B4 Red 0.663 0.830 
 

0.689 
 0.689 0.0014 461.891 

B8 NIR 0.094 0.638 0.407 0.407 0.0003 257.209 

 

Table TTT25. Multilinear Regression Model  for Sentinel 2 Red Edge 1 channel (B5)- Model 
Evaluation. 

Red Edge 1 Panchromatic regression model - Model Evaluation 

 R2 Adjusted R2 Std Error SSR SSE SST MSR MSE F - test 

ANOVA 0.994 0.994 0.007 869.161 5.007 874.168 217.290 0.00005 4170999.19 

 CV MSE CV RMSE CV NRMSE CV R2 

Cross 
Validation 0.000052 0.00722 0.00429 0.994268 
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Table TTT26. Multilinear Regression Model  for Sentinel 2 Red Edge 2 channel (B6)- Model 
Coefficients. 

 Red Edge 2 Panchromatic regression model - Model Coefficients 

 Coefficient r R2 Adjusted R2 Std Error t -test 

B2 Blue -0.250 -0.240 0.057 0.057 0.003 -76.765 

B3 Green 0.647 0.367 0.135 0.134 0.005 122.48 

B4 Red -0.126 -0.219 0.048 0.048 0.001 -69.7664 

B8 NIR 0.751 0.982 0.964 0.964 0.0004 1621.687 

 

Table TTT27. Multilinear Regression Model  for Sentinel 2 Red Edge 2 channel (B6)- Model 
Evaluation. 

Red Edge 2 Panchromatic regression model - Model Evaluation 

 R2 Adjusted R2 Std Error SSR SSE SST MSR MSE F - test 

ANOVA 0.994 0.994 0.009 1489.62 7.96 1497.58 372.40 0.00003 4493966.77 

 CV MSE CV RMSE CV NRMSE CV R2 

Cross 
Validation 0.00008 0.0091 0.005 0.994 

 

Table TTT28. Multilinear Regression Model  for Sentinel 2 Red Edge 3 channel (B7)- Model 
Coefficients. 

 Red Edge 3 Panchromatic regression model - Model Coefficients 

 Coefficient r R2 Adjusted R2 Std Error t -test 

B2 Blue -0.086 -0.088 0.007 0.007 0.003 -27.54 

B3 Green 0.247 0.155 0.024 0.024 0.005 48.68 

B4 Red -0.141 -0.254 0.064 0.064 0.001 -81.44 

B8 NIR 0.965 0.989 0.979 0.979 0.0004 2170.13 
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Table TTT29. Multilinear Regression Model  for Sentinel 2 Red Edge 3 channel (B7)- Model 
Evaluation. 

Red Edge 3  Panchromatic regression model - Model Evaluation 

 R2 Adjusted R2 Std Error SSR SSE SST MSR MSE F - test 

ANOVA 0.996 0.996 0.008 1948.28 7.342 1955.63 487.07 0.00007 6375629.29 

 CV MSE CV RMSE CV NRMSE CV R2 

Cross 
Validation 0.00007 0.0087 0.0053 0.9962 

 

Table TTT30. Multilinear Regression Model  for Sentinel 2 SWIR 1 channel (B11)- Model Coefficients. 

 SWIR 1  Panchromatic regression model - Model Coefficients 

 Coefficient r R2 Adjusted R2 Std Error t -test 

B2 Blue -1.555 -0.429 0.184 0.184 0.010 -147.35 

B3 Green -0.011 -0.002 0.000 0 0.017 -0.69 

B4 Red 2.150 0.763 0.582 0.582 0.005869 366.35 

B8 NIR 0.332 0.581 0.337 0.337 0.0015 221.44 

 

Table TTT31. Multilinear Regression Model  for Sentinel 2 SWIR 1 channel (B11)- Model Evaluation. 

SWIR 1   Panchromatic regression model - Model Evaluation 

 R2 Adjusted R2 Std Error SSR SSE SST MSR MSE F - test 

ANOVA 0.954 0.954 0.029 1751.33 83.570 1834.902 437.832 0.0008 503556.6 

 CV MSE CV RMSE CV NRMSE CV R2 

Cross 
Validation 0.00087 0.029488 0.020499 0.954451 
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Table TTT32. Multilinear Regression Model  for Sentinel 2 SWIR 2 channel (B12)- Model Coefficients. 

 SWIR 2  Panchromatic regression model - Model Coefficients 

 Coefficient r R2 Adjusted R2 Std Error t -test 

B2 Blue -1.088 -0.350 0.123 0.123 0.009 -116.12 

B3 Green 0.181 0.03 0.001 0.001 0.01 11.93 

B4 Red 1.606 0.705 0.497 0.497 0.005 308.48 

B8 NIR 0.081 0.192 0.037 0.037 0.001 60.91 

 

Table TTT33. Multilinear Regression Model  for Sentinel 2 SWIR 2 channel (B12)- Model Evaluation. 

SWIR 2 Panchromatic regression model - Model Evaluation 

 R2 Adjusted R2 Std Error SSR SSE SST MSR MSE F - test 

ANOVA 0.931 0.931 0.026 901.58 65.811 967.393 225.395 0.0006 329183.2 

 CV MSE CV RMSE CV NRMSE CV R2 

Cross 
Validation 0.0006 0.026 0.021 0.931 

 

The model evaluation in the individual channels shows an increase in the value of the coefficient of 
determination compared to the simpler selected band scheme approach, which is even significant in the 
SWIR channels. HP – MTF – GLP fusion algorithm was applied with the synthetic pan bands created 
by the described models. The summary of the quantitative evaluation of the S2 fusion result is presented 
on the following table (Table TTT34): 

Table TTT34. HP- MTF-GLP algorithm quantitative evaluation metrics for synthetic pan band 
scheme. 

HP-MTF-GLP - Evaluation Metrics 

 PSNR SSIM SAM 

B5 47.9548 0.99687 0.363 

B6 43.82 0.975 0.388 

B7 42.15 0.966 0.381 

B11 42.075 0.9681 0.38 
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B12 49.1832 0.98691 0.364 

 

A slight improvement has been observed to the SWIR bands fusion results, which were also the most 
problematic ones. 

A spectral signature sampling has been implemented to the Reference and Fused images, in a stratified 
manned dictated by the Sentinel 2 MSI Quality Scene Classification Layer SCL, for the qualitative 
assessment of spectral distortion, over the major land cover classes of Barren Land, Vegetation, and 
Water. The radiometric deviation between the two images (Figures XXX22 - XXX24), over the Red Edge 
and SWIR bands is a subjective but nevertheless clear indicator of the spectral alteration (over/under 
estimation) introduced by the S2 fusion. 

 
Figure XXX22. Averaged Spectral Signature of Barren Land for Fused and Reference S2 MSI image. 
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Figure XXX23. Averaged Spectral Signature of Vegetation for Fused and Reference S2 MSI image. 

 

 
Figure XXX24. Averaged Spectral Signature of Water for Fused and Reference S2 MSI image. 
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The observed spectral disambiguation, is expressed as an average relative error of radiometric BOA 
reflectance, on the following summary table. Relative errors expressed as % percentage are summarized 
for each Red Edge and SWIR band, over the selected SCL classes. 

Table TTT35. Average Relative Error between Reference and Fused S2 Image spectral signatures 
(synthetic pan band scheme), for the SCL classes of Barren Land, Vegetation, and Water. 

 Average Relative Error of SCL spectral signatures (%) 

 B5 – Red Edge 1 B6 – Red Edge 
2 B7 – Red Edge 3 B11 – SWIR 1 B12 – SWIR 2 

Barren 16.40 0.79 -1.19 5.96 -0.81 

Vegetation 28.06 -5.34 -8.01 12.97 16.39 

Water 16.38 73.13 73.27 644.75 692.32 

 

From the summary evaluation of the S2 image fusion results using the HP - MTF - GLP fusion algorithm 
with a synthetic pan bands scheme it was concluded that the quality metrics were improved, with 
emphasis on the problematic bands SWIR 1 , SWIR 2, which was also evident when comparing the 
spectral signatures in the 3 main land cover categories. To use the fine spatial resolution from the four 
10 m bands, two schemes, the synthesized band scheme and the selected band scheme, were considered 
to obtain a single fine resolution band for matching with each 20 m multispectral image or 20 m band. 
In the current iteration, analysis of the results demonstrated that the synthetic panchromatic band 
scheme provided enhanced results compared to the more simple approach of the selected band scheme. 

 
4.5.2. Hyperspectral Data 

 
Challenge: 

One of the most significant challenges in the PRISMA data preprocessing process and the preparation 
of the hyperspectral cube for fusion with the Sentinel-2 data is locating, identifying, evaluating and 
handling the bad bands within the PRISMA hyperspectral cube. Bad bands can reduce the quality of 
hyperspectral data and they are characterized by spectral inconsistencies such as sensor noise, 
atmospheric interference or an insufficient signal-to-noise ratio.   
 
 
Approach: 

The evaluation of bad bands in PRISMA imagery encompasses a process that aims to improve the 
hyperspectral data quality for further analysis and use in the data fusion pipeline. This bad bands 
evaluation process involves several steps, one of which is the elimination of overlapping bands between 
the visible near-infrared (VNIR) and shortwave infrared (SWIR) data cubes (Table 15.) Targeted 
elimination of water absorption bands is also necessary in order to minimize the atmospheric 
interference distortions and maximize data clarity.  Moreover, image error matrix and error matrix 
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statistics are used, which allows for the accurate identification, evaluation and removal of the noisy 
bands from the hyperspectral cube. 
 
 
Methodology: 

As the HS/MS images pair on the 26/05/2020 is chosen to proceed with (Chapter 4.4.), the PRISMA 
image on 26/05/2020 (PRS_L2D_STD_20200526080833_20200526080837_0001) underwent the 
preprocessing and bad bands evaluation process. 
 
Tools 
 
PRISMA data were imported, explored and processed manually in the EnMAP-Box plugin of QGIS. 
EnMap-Box is able to import the VNIR and SWIR cubes as well as the PAN cube as raster layers in 
Float32 data type. VNIR and SWIR error matrices can also be imported in 8-bit data type. 
 
VNIR/SWIR overlapping bands elimination 
 
As already mentioned, the VNIR and SWIR data cubes composing the PRISMA image present a band 
overlap at around 943.35 to 979.22 nm (Table 15.). It is observed that SWIR cube bands cover a wider 
spectral area as the bands present a more even distribution concerning their wavelengths. Thus, at this 
step, the 4 VNIR cube bands in the overlapping area (i.e, 944.62 nm, 956.27 nm, 967.02 nm and 977.36 
nm) were eliminated from the hyperspectral cube. 
 
 
 
 
Atmospheric water absorption bands elimination 
 
The atmospheric water absorption bands are located in the wavelength ranges of 1340 - 1440 nm, 1780 
- 1970 nm and 2300 - 2500 nm (Figure 28.) and they are apparent at an image’s spectral profile. Other 
peaks can be found at different rates in the wavelengths around 920 and 1120 nm (Minor absorption 
zones). These spectrum regions constitute a part of the bands characterized as bad bands, which were 
removed from the PRISMA hyperspectral cube as well. 
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Figure 28. Atmospheric water absorption bands (Mohamed et al., 2018). 

 
 
 
 
Bad (noisy) bands evaluation and elimination 
 
The VNIR/ SWIR overlapping bands and the atmospheric water absorption bands elimination 
procedures were followed by the image noise removal, which constituted the last step in the PRISMA 
data preprocessing and a necessary procedure as well. Within this context, the VNIR and SWIR data 
cubes were processed for bad/noisy bands identification and extraction, where a bad/noisy band was a 
band that presented reflectance values close to zero or anomalies along the distribution and therefore it 
was not desirable for subsequent processing of the hyperspectral image in the hyperspectral/ 
multispectral fusion. The identification and evaluation of noisy bands was carried out through the error 
matrix extraction and its statistics, specifically the error matrix maximum values, as well as through the 
simultaneous examination of the spectral plots in order to gain information about the image noise 
through visual inspection. 
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Figure 29. Error matrix maximum values, in which a typical “salt and pepper” effect indicating the 

noisy bands is present. 
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Figure 30. Spectral plot of a pixel in the hyperspectral cube after the overlapping and the water 

absorption bands removal, but before the noisy bands removal.  It is observed that several bands have 
reflectance values at zero or close to zero (bad/noisy bands). 

 

 
Figure 31. From top to bottom: Error matrix maximum values, hyperspectral cube after the removal of 

overlapping and water absorption bands, spectral plot of a pixel with noisy bands in the area of the 
typical “salt and pepper” effect. 
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Experimental Results: 

The selected PRISMA Image on 26/05/2020 (PRS_L2D_STD_20200526080833_20200526080837_0001) 
underwent the preprocessing and bad band evaluation process, after which 172 spectral bands were 
finally retained and saved as a new hyperspectral cube in a GeoTIFF format image.  
 
The metadata of the new hyperspectral cube are: 
 

Data Type = float32 
CRS = WGS 84 / UTM zone 36N 
Units: BOA Reflectance units, 0-1 
Νο-data value: -99999 
File type = TIFF 
Samples = 1191 
Lines = 1184 
Bands = 172 (Remained after the bad band evaluation process - data cleaning) 
Wavelength units = Nanometer 
Wavelength = {453.38947, 460.73175, 468.09842, 475.31885, 482.54816, 489.79486, 497.05865, 
504.51172, 512.04639, 519.54376, 527.3053, 535.05255, 542.88513, 550.91461, 559.02026, 567.20612, 
575.48682, 583.84412, 592.33899, 601.0144, 609.95819, 618.71997, 627.77844, 636.67627, 645.96381, 
655.41876, 664.8941, 674.46436, 684.13727, 694.12836, 703.737, 713.72687, 723.87994, 733.9552, 
744.14954, 754.4696, 764.85645, 775.2735, 785.65955, 796.12701, 806.71106, 817.31104, 827.91949, 
838.52722, 849.20996, 859.97314, 870.74255, 881.45605, 892.08093, 902.80164, 913.44507, 923.9502, 
934.11206, 943.35791, 951.40143, 959.974, 969.84491, 979.224, 988.91791, 998.9082, 1008.6443, 
1018.5357, 1029.344, 1037.9878, 1047.675, 1057.5737, 1067.7948, 1078.2161, 1088.761, 1099.2776, 
1109.8894, 1120.6759, 1131.3048, 1142.0703, 1152.6501, 1163.676, 1174.7142, 1185.5884, 1196.3394, 
1207.2737, 1217.8635, 1229.1852, 1240.2145, 1250.9799, 1262.5322, 1273.4963, 1284.4878, 1295.4218, 
1306.218, 1317.2566, 1328.2993, 1339.1294, 1459.3157, 1469.9308, 1480.8422, 1491.4292, 1502.0236, 
1512.6333, 1523.2222, 1533.7764, 1544.2262, 1554.8168, 1565.3688, 1575.6274, 1585.8597, 1596.2454, 
1606.4913, 1616.8336, 1627.021, 1637.0919, 1647.2316, 1656.933, 1667.1851, 1677.3193, 1687.4269, 
1697.2943, 1707.0945, 1716.8589, 1726.6516, 1736.4883, 1746.2192, 1755.833, 1765.5127, 1775.1178, 
2027.7267, 2036.2607, 2044.6809, 2053.0078, 2061.3787, 2069.7957, 2077.9915, 2086.3823, 
2094.6252, 2102.8213, 2111.0391, 2119.2314, 2127.3372, 2135.5103, 2143.4656, 2151.3862, 2159.564, 
2167.4849, 2175.3442, 2183.4202, 2191.1003, 2199.1353, 2206.843, 2214.625, 2222.4263, 2230.0076, 
2237.9041, 2245.4485, 2253.1104, 2260.8665, 2268.2883, 2276.0537, 2283.4934, 2290.8267, 
2298.6094, 2305.7227, 2313.2007, 2320.8955, 2327.8242, 2335.5264, 2342.8228, 2349.7915, 
2357.2937, 2364.5945, 2371.5522, 2378.771, 2386.0618, 2393.0388} 
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Figure 32. Spectral plot of a pixel in the hyperspectral cube after the removal of overlapping, water 

absorption and noisy bands. It is noticed that the bands at zero or close to zero have been eliminated. 
 
 
Issues and Next Steps: 

Issues 
 
During the preprocessing and bad bands evaluation and elimination process, the following issues were 
observed: 

● The conversion/ scaling factors are not consistent among the PRISMA acquisitions. This fact 
raised a concern regarding the implementation of a fully automated methodology approach, as 
each PRISMA acquisition should be scaled by utilizing its own unique scaling factors, which have 
to be retrieved in advance.   

● In some cases, the conversion/ scaling factors are different even within the same image, as each 
one is the union of the VNIR and SWIR data cubes, which may have different scaling factors.  
This was observed in the case of the acquisition on 26/05/2020, in which the scaling factors 
between the VNIR and the SWIR data cubes were different. In particular, they were:  

          L2ScaleSwirMax=0.686 
          L2ScaleSwirMin=0 
 
          L2ScaleVnirMax=0.606 
          L2ScaleVnirMin=0 

● Thus, in order to perform the data scaling on such a hyperspectral cube, the PRISMA data scaling 
equation has to be applied separately in the VNIR and the SWIR data cubes.  

● A different number of spectral bands remains on each different hyperspectral cube after the bad 
bands evaluation and elimination process. This fact has an implication on the development of a 
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fully automated approach as each time a distinct number of bands composing the processed 
hyperspectral image serves as input in the hyperspectral/ multispectral data fusion algorithm.  

● Regarding the cloud coverage evaluation of each PRISMA acquisition, it was found that the cloud 
coverage information provided by PRISMA images metadata is not indicative of the images’ 
actual cloud coverage. Since a quality control layer is not available, the evaluation of acquisitions 
had to be performed via visual inspection, a fact that poses an implication on a fully automated 
approach. 

 
 

4.5.3. Hyperspectral – Multispectral Image Co-registration 
 
Challenge: 

PRISMA hyperspectral (HS) and Sentinel-2 MSI multispectral (MS) imagery compose the input data of 
AFRI4Cast’s hyperspectral/ multispectral data fusion component targeting on the spatial enhancement 
of PRISMA hyperspectral bands. However, these datasets present inherent differences in spatial and 
spectral resolutions. The accurate detection and correction of geospatial misalignments between these 
datasets presents a challenge and it was also the case in the current HS and MS selected images. This 
image misalignment constitutes an obstacle and significantly complicates the image fusion process. 
 
Approach: 

The geospatial misalignment of PRISMA/ Sentinel-2 images was solved through an image co-
registration process. Image co-registration is a technique for minimizing the shifts between two 
different images at a sub-pixel level by fixing the displacement of an image with respect to a reference 
image. This technique was the chosen approach as the HS/MS images had to be aligned in order to serve 
as input in the image fusion process and avoid critical errors. 
 
 
 
Methodology: 

Within AFRI4Cast, in order to proceed with the HS/ MS image co-registration, AROSICS was utilized. 
AROSICS is an automated and robust open-source image co-registration software for multi-sensor 
satellite data, offering two interfaces, i.e., a Python API and a command line interface. It detects and 
corrects local and global misalignments between two input images at a sub-pixel scale.  
 
Generally, there are two groups of image registration methods: intensity based and feature based. In 
this context, the primary technology utilized by AROSICS to identify sub-pixel displacements is phase 
correlation, an intensity-based registration method. In this manner, the independence from discrete 
image features that may be unevenly distributed or absent altogether, especially regarding the dynamic 
surface coverages that are present in multi-temporal satellite data, is maintained (Scheffler et. al, 2017).  
 
Phase correlation allows for the fast computation of relative translational offsets between two images in 
the same dimension by relying on the derivation of image displacements in the frequency (Fourier) 
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domain. Phase correlation offers far higher accuracy than other intensity-based methods, such classical 
cross-correlation, due to a distinct peak in the cross-power spectrum that indicates the registration 
point. It produces excellent co-registration results even when there are significant variations in ground 
cover across the different images and low signal-to-noise ratios (Scheffler et. al, 2017). To sum up, 
AROSICS is based on a phase correlation approach and makes use of Fourier shift theorem, enabling 
the determination of precise X/Y offsets at a given geographical position. 
 
According to Scheffler et. al (2017), the AROSICS workflow consists of three main processing steps: 
 

● Input data preparation, that includes: (1) automatic selection of the spectral bands from target 
and reference image to be used for co-registration; (2) no-data mask generation and 
combination with user-provided masks (e.g., containing clouds and cloud shadows) to separate 
bad-data masks for reference and target image; (3) calculation of the respective footprint 
polygons and corresponding overlap area; (4) pixel coordinate grid equalization; and (5) 
adjustment of matching window positions and sizes. 

● Detection of geometric shifts, either in a moving-window manner for each point of a dense grid 
(local co-registration approach) or for only a single coordinate position (global co-registration 
approach), including validation. 

● Correction of displacements, by warping the target image under the use of a list of tie points 
(local co-registration approach) or a single X/Y shift vector (global co-registration approach). 

 
The presented workflows for correcting local or global displacements are different algorithms/modes 
and both are components of AROSICS. The local co-registration method estimates X/Y translations 
for each point inside the overlap area of the input images by applying phase correlation in a moving-
window manner to a regular grid of coordinate points. Afterwards, a set of quality metrics are used in 
order to validate the resulting shift vector grid. After passing all validation stages, the remaining points 
are utilized as a list of tie points to fit an affine transformation model that warps the target picture and 
corrects any local geometric misalignments that were detected (Scheffler et. al, 2017). 
 
On the other hand, the global co-registration method calculates the displacements within a small 
image subset (from here: matching window) at only one coordinate position. Then, a single 
displacement vector is used to shift the target image. Compared to the local co-registration approach, 
the global method is computationally inexpensive and, therefore, very fast. Additionally, by adjusting 
the geocoding metadata, the deactivation of image warping to address sub-pixel X/Y shifts without 
resampling is allowed. This does not match the coordinate grid of the reference image, but it does keep 
the initial pixel values (Scheffler et. al, 2017). However, the global co-registration method assumes that 
a constant (global) translation in the X and Y dimensions may characterize the entire displacement 
between the reference and target images. 
 
In conclusion, the local co-registration approach identifies the spatial shifts over the whole overlap area 
of the input images. The spatial shifts are computed for every point in the grid of which the parameters 
can be changed by using keyword arguments. Then, shift correction uses the estimated shifts of each 
grid point as ground control points to execute a polynomial transformation. As a result, locally varying 
geometric distortions of the target image can be corrected utilizing this approach. In the case of the 
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global co-registration approach, the global changes in X and Y between a reference image and the target 
image are recognized and fixed by the algorithm performing a global shifting in X or Y direction. Within 
AFRI4Cast, both local and global co-registration approaches were tested and their performance in the 
selected hyperspectral and multispectral images was evaluated. 
 
For the accomplishment of the co-registration approach, the reference and the target images (inputs) 
were defined. 

● Reference Image: The multispectral layerstack (Sentinel-2) in BOA reflectance values and 
Float32 data type      

● Target Image: The hyperspectral cube (PRISMA) in BOA reflectance values and Float32 data 
type 

 
AROSICS framework also allows the fine-tuning of the results through the provision of user-defined 
data. In the terms of HS/MS image co-registration within AFRI4Cast, the grid resolution (in case of 
local co-registration) and the matching window size were used as tuning arguments. The grid resolution 
defines the distance between the tie points in pixels of the target image grid. At this point, it is worth 
mentioning that small point distances enable the complex distortions correction, although they increase 
the computational load. As for the matching window size, it has a default value of 256 x 256 pixels or a 
user-provided setting and it remains constant within the overlap area used for co-registration. Since the 
accuracy of the estimated displacement varies with the size of the matching window, it is necessary that 
the results of neighboring displacement vectors remain comparable. Several tests were performed, in 
which the tuning parameters received the following values: 
 

● Grid resolution (grid_res) (float): {5, 15, 25} 
● Window size (window_size) (Tuple[int, int]): {64, 128, 256, 512} 

 
Apart from the arguments that were used for the algorithm tuning, there were also the fixed arguments 
which maintained a constant value throughout the various tests that were performed. These arguments 
were the following: 
 

● path_out (str) – target path of the coregistered image 
● fmt_out (str) – raster file format for output file. Can be any GDAL compatible raster file format 

(e.g. ‘ENVI’, ‘GTIFF’; default: ENVI) 
● r_b4match (int) – band of reference image to be used for matching 
● s_b4match (int) – band of shift image to be used for matching 
● max_shift (int) – maximum shift distance in reference image pixel units (default: 5 pixel) 
● align_grids (bool) – True: align the input coordinate grid to the reference (does not affect the 

output pixel size as long as input and output pixel sizes are compatible 
● out_gsd (float) – output pixel size in units of the reference coordinate system 
● v (bool) – verbose mode 

 
 
Experimental Results: 

Co-registration method 
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Various tests were performed in the selected hyperspectral and multispectral images both with the 
global and the local co-registration methods for the delineation of the appropriate approach for our test 
case.  
It was observed that locally varying spatial displacements existed in our test case. Therefore, a co-
registration approach that is able to identify the spatial shifts by utilizing every point in the grid (tie 
points) in order to carry out the shift correction resulting in the correction of the locally varying 
displacements (local co-registration method) was preferred compared to a method that performs global 
shifting in X or Y direction so as to fix the spatial misalignments. Moreover, the performance of the 
several tests presented better results in the local co-registration mode trials than the global ones. Hence, 
the local co-registration method was chosen to proceed with as it was proven to be the most appropriate 
in our case. 
 
Tuning arguments evaluation 
 
For the determination of the best values for the tuning parameters (grid resolution and matching 
window size), several tests including all the possible combinations between the grid resolution and the 
matching window size values were performed.  As mentioned above, within these tests, the tuning 
parameters’ values that were tested were: 
 

● Grid resolution (grid_res): {5, 15, 25} 
● Window size (window_size): {64, 128, 256, 512} 

 
These parameters were evaluated based on the co-registration overall statistics extracted after the 
performance of local co-registration for each parameter combination that was carried out. The selected 
evaluation approach compares the similarity of the subset image content within the matching window 
before and after shift correction. It is based on the assumption that a successful shift correction results 
in an increased similarity between the reference and the target image (Scheffler et. al, 2017). Thus, the 
Mean Structural Similarity Index (MSSIM) was chosen as an image similarity metric since it is known 
to be highly sensitive to even minor image displacements. MSSIM can have a value between 0 and 1, 
where 0 indicates no match and 1 indicates a perfect match. 
 
In this context, “MSSIM before” and “MSSIM after” constitute the metrics that were used for the tuning 
arguments evaluation. “MSSIM before” expresses the mean structural similarity index within each 
matching window before co-registration, while the “MSSIM after” expresses the mean structural 
similarity index within each matching window after co-registration.  
 
Relying on these metrics, the best results were indicated when the grid resolution was equal to 25 pixels 
(grid_res = 25) and the matching window size equal to 64 pixels (window_size = 64). That was the case 
in which the biggest difference between the MSSIM index before and after the co-registration as well as 
the highest result of the MSSIM index after the co-registration were observed, compared to the same 
metrics of all the other tests that were performed. 
 
 
Tuning and fixed arguments configuration 
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Considering the tuning and fixed arguments configuration, the values of these parameters, that were 
used during the local co-registration mode, were formed as follows:   
 

● grid_res : 25, 
● window_size: (64,64), 
● path_out : '/path/to/store/output/coregistered/image/cor.tif', 
● fmt_out : 'GTIFF', 
● r_b4match: 7, 
● s_b4match: 45, 
● max_shift: 15, 
● align_grids': True, 
● out_gsd  : [30,30], 
● v: True 

 
Regarding the band of the reference image (r_b4match) and the band of the target image (s_b4match) 
that were used for matching, it was decided to proceed with the bands that belong to the NIR spectral 
range. These bands corresponded to Band 7 in the multispectral composite and Band 45 in the 
hyperspectral cube.  
 
In the images below, at first the relative geometric shifts between the Sentinel-2 and the PRISMA images 
are presented (Figure 33).  Figures 34 and 35 exhibit the absolute geometric shift vectors calculated on 
the tie point grid, on which the shift correction was based. It was concluded that on average the 
geometric shift was 167.5 m. The absolute geometric shift vectors are presented in Figure 36, as well. 
The calculated shift angle which is equal to 173.6 degrees is also displayed in Figure 36. Lastly, Figure 
37. exhibits the HS/ MS image co-registration result. 
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Figure 33. Relative geometric shifts between the Sentinel-2 and the PRISMA images. Both images are 

presented in RGB pseudocolor visualization. 
 
 

 
Figure 34. Absolute geometric shift vectors calculated on the tie point grid, on which the shift 

correction was based. The co-registered PRISMA image in RGB (850,650,550) visualization serves as 
a base image. 



D7.1 - Algorithm Theoretical Baseline Documents (ATBDs) and Product Specifications 

 

134 
 

 
 

 
Figure 35. Geometric shifts calculated on the tie point grid, on which the shift correction was based. 

The co-registered PRISMA image in RGB (850,650,550) visualization serves as a base image. 
 
 
 

 
Figure 36. Absolute geometric shift vectors calculated on the tie point grid, on which the shift 

correction was based. The Sentinel-2 image in RGB pseudocolor (SWIR-RedEdge3-RedEdge1) 
visualization serves as a base image. 



D7.1 - Algorithm Theoretical Baseline Documents (ATBDs) and Product Specifications 

 

135 
 

 

 
Figure 37. HS/ MS image co-registration result. Above: Sentinel-2 image, Below: Co-registered 

PRISMA image. 
 
 
Issues and Next Steps: 

The co-registration of PRISMA and Sentinel-2 images using the AROSICS local co-registration method 
produced satisfactory results that met our expectations, as determined by the evaluation of metrics 
outlined in the previous chapter. Thus, given the successful alignment accomplished between the 
images, no immediate necessity for additional actions is considered. 
 
 

4.6. Hyperspectral - Multispectral Data Fusion 

 
Challenge: 

According to the findings documented in the relevant deliverable D3, the task of HS - MS Fusion, 
considers a pair of images that cover the same region of interest but also pose a tradeoff between their 
dimension resolutions. This tradeoff regards the well-known and inevitable inverse-reciprocal 
relationship between spatial and spectral resolution, in remote sensing systems. HS Imagery with a 
large number of bands usually has a low spatial resolution to ensure high SNR. On the contrary, MS 
sensors can obtain an image with a higher spatial resolution but with a small number of spectral bands. 
An image fusion algorithm is designed in order to recreate a synthetic image that overcomes that specific 
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trade-off to be generated, by extracting image priors, i.e. features, that outline the relative advantages 
of each of the HS-MS representations (Nanni et al, 2017). For example, the low-rankness of HS image, 
or the spatial smoothness of MS, have been considered as useful priors, for that cause. At this point it is 
worth mentioning that an important factor in the flexibility of an algorithm is the way in which the 
image priors it uses are calculated and extracted. 
 
Traditional image fusion frameworks emerging from classical computer vision methods, design 
explicitly defined handcrafted image priors. The parametrization of latent variable selection in 
component substitution algorithms is the simplest example of it, while the more advanced 
Multiresolution Analysis methods involve a thorough tuning of their filtering parameters in order to 
approximate intrinsic image priors of the HS sensor, such as the MTF. In that sense, these features are 
considered as handcrafted because they presume expert knowledge in their design, in order to overcome 
specific issues like occlusions and variations in image scale and illumination, while balancing between 
accuracy and computational efficiency. The frameworks that involve the use of handcrafted image 
features can reconstruct the enhanced image without the need of a guidance image as a training dataset, 
by explicitly assuming prior knowledge. However, the priors designed for one task may not be as 
effective when applied to other tasks. This has an effect on the flexibility of the framework, to handle, 
for example, data from different sensors (Uezato et al, 2020). 
 
Recently, Deep Learning Image Fusion frameworks have received more and more attention in many 
processing applications due to its high efficiency and promising performance.  In the HS and MS image 
fusion, DL methods use LR-HS and HR-MS images as an input and an HR - HS image as an output, by 
learning the mapping function between the inputs and the output. Deep learning (DL) approaches avoid 
the assumption of explicit priors for each specific fusion task. Although network architectures 
themselves need to be handcrafted, properly designed network architectures have shown to solve 
various problems. However, they have the disadvantage that they need training data, which limits their 
use in practical remote sensing applications. It is usually difficult, or even impossible to collect a large 
size of training data including reference, i.e., HR-HS or HR-MS (Uezato et al, 2020). Most studies, like 
the ones presented on deliverable D3, used synthetic data emerging from HR-HS imagery, from 
missions such as the AVIRIS, that exist as experimental datasets. For that reason, they have limited 
generalization performance on “real data” and have to be modified in order to be applicable. 
 
In consideration of the particularities of the HS-MS Fusion task in general, outlined above, combined 
with the constraints that justify it in the case of Afri4Cast, such as the intrinsic specifications of Sentinel 
2 MSI and PRISMA imagery, or even the generalization capability of the algorithm on an operational 
level, the following challenges are highlighted: 
 

● The need of handcrafted image feature extraction that requires expert knowledge for 
parameterization, in the case of traditional computer vision approaches 

● The requirement of High Resolution Hyperspectral data for training a Deep Learning Fusion 
Network. 
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Approach: 

 
The decided approach that was adopted in Afri4Cast for the HS-MS image fusion task was, initially, to 
develop and evaluate models derived from traditional fusion methodological frameworks, prevalent in 
the remote sensing field, such as Component Substitution algorithms, and use them as benchmarks. 
Subsequently the implementation of a Deep Learning Fusion Framework, for which various qualitative 
and quantitative properties such as the accuracy, generalization, or its computational efficiency would 
be evaluated in comparison to traditional methods. The experimental design involved implementation 
and evaluation on a common dataset, from the pilot regions of interest of Afri4Cast, which had 
undergone the same preprocessing steps. 
 
Hyper Pansharpening – Components Substitution Methods 
 
The starting point for the pan-sharpening process was the acquisition of the basic data set for the 
analysis. In particular, a hyperspectral (HS) image (e.g. PRISMA with 30 m resolution) and one or more 
multispectral images (e.g. Sentinel-2 with 10 m resolution) that completely covered the same area as 
the HS, in the same time period, was used. A number of methods will be described below, which have 
been used and compared to identify the one with the best performance. The methods used are: 

● Brovey Fusion Methodology; 
● FHIS (Fast Intensity Hue Saturation); 
● Gram-Schmidt; 
● Gram-Schmidt Adaptive. 

 
 
Deep Learning Fusion 
 
In order to bridge the gap between the traditional and supervised DL approaches, an unsupervised DL 
approach has been adopted, as a way to bypass the necessity of HR-HS training data. But could it be 
possible to use DL approaches without training data? The possible way to solve this obstacle was by 
adopting a zero-shot learning scheme, which trains the deep network from the data to be fused, by 
employing Wald’s Protocol principle. According to that, the performance of data fusion models is 
independent of the scale, provided that certain conditions hold. In their seminal work Wald et al. (1997) 
suggested first degrading the input image according to a factor k, thus creating LR-HR image pairs, and 
proceed to design a model tasked to downscale the degraded HS image to the original resolution. Then 
the developed method can be transferred to downscale the original image into one of much higher 
resolution according to the same downscaling factor k. The suggested approach was the development of 
an unsupervised DL method. This network architecture was proposed as a regularizer for unsupervised 
image fusion tasks that can be applied in a zero shot learning scheme, with a degrading factor equal to 
3, by using the multiscale semantic features from a guidance image, which for the specified task was the 
PRISMA image at its native spatial resolution. 
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Methodology: 

 
4.6.1. Hyper Pansharpening – Components Substitution 

Methods 
 
Brovey Fusion 
 
The Brovey method, a widely recognized pan-sharpening technique in remote sensing, uses the 
following approach: the pan-sharpened image is acquired by changing the intensity values of each 
multispectral band according to the proportion of the corresponding pixel values in the panchromatic 
band. This method is typically applied individually to each band and the resulting pan-sharpened bands 
are subsequently merged to generate the final high-resolution image. 
The Brovey pan-sharpening equation for a specific band can be mathematically represented as: 
 

𝐹* =
𝐵*

C∑ ⬚⬚
⬚ 𝑜𝑓𝑎𝑙𝑙𝑏𝑎𝑛𝑑𝑠E

∙ 𝑆𝑒𝑛2	

 
Where Fi is the ith fused band, Bi is the single band of the hyperspectral image (PRISMA), Sen2 is the 
image of the multispectral band (Sentinel-2) while the sum is taken over all the bands considered for 
the region. Through this normalization technique, the spectral attributes of multispectral data are 
retained, while the spatial resolution is enhanced using detailed information provided by the 
panchromatic band. The panchromatic band in this case is represented by the S2 wider band channel. 
Well-known for its simplicity and effectiveness, the Brovey method efficiently preserves spectral 
accuracy throughout the pan-sharpening process. 
 
FIHS (Fast Intensity Hue Saturation) 
 
The Fast Intensity Hue Saturation (FIHS) pan-sharpening technique is a cutting-edge method within 
the realm of remote sensing data fusion. Through FIHS, a pan-sharpened image is skillfully created by 
carefully adjusting both the intensity and hue aspects of multispectral bands, taking cues from the pixel 
values present in the panchromatic band. This goes beyond traditional approaches that mainly 
concentrate on intensity adjustments, as FIHS thoughtfully incorporates hue, providing a 
comprehensive enhancement to the combined imagery. During the FIHS procedure, each band 
undergoes a thorough transformation, with intensity changes made in relation to pixel values in the 
panchromatic band, like the Brovey technique. Concurrently, the hue element is delicately adjusted to 
ensure accurate representation of spectral attributes. This simultaneous alteration guarantees that not 
just spatial details, but spectral subtleties are meticulously preserved within the resulting pan-
sharpened image. 
 
In situations where the harmonious fusion of spatial and spectral data is vital, the FIHS method proves 
to be highly effective. This makes it a significant tool for applications such as land cover classification 
and environmental monitoring. As FIHS expands upon traditional pan-sharpening practices by 
incorporating hue adjustments, it distinguishes itself as an advanced approach capable of producing 
high-resolution images with enriched spectral accuracy. 
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For each band Bi, the fused band Fi is calculated using the formula: 
 

𝐹# =	𝐵# + (𝑆𝑒𝑛2	 ∙ 𝐿)	
 
Where Bi is the single band of the hyperspectral image (PRISMA), Sen2 is the image of the multispectral 
band (Sentinel-2) and L is the sum of all the bands divided for the number of bands. The sum is taken 
over all the bands considered for the region. 
 
Gram-Schmidt 
 
It is a method for orthogonalizing a set of vectors. In the specific context of data fusion, particularly 
pan-sharpening in remote sensing, it helps enhance spatial resolution by combining high-resolution 
panchromatic imagery (high-resolution multispectral data) with lower-resolution multispectral data 
(lower-resolution hyperspectral data). Following a simplified explanation of how the Gram-Schmidt 
algorithm works for data fusion. 
 
In the data initialization, we have two sets of data one is multispectral (MS) bands and a panchromatic 
(PAN) band. The Gram-Schmidt process begins by considering the MS bands one at a time. The first 
MS band is chosen as the initial vector for the orthogonal basis. The chosen MS band is projected onto 
the subspace defined by the PAN band. This projection yields the component of the MS band that aligns 
with the PAN band. Simultaneously, the orthogonal component, which is perpendicular to the PAN 
band, is identified. The sum of the orthogonal and projection components is equal to the zero-mean 
version of the original MS band. This ensures that the MS bands are adjusted in a way that preserves 
their spectral information. The algorithm proceeds iteratively, considering each MS band in turn. For 
each band, it finds the projection on the subspace defined by the PAN band and its orthogonal 
component with respect to previously processed bands. Once the orthogonalization is complete, the 
pan-sharpening is achieved by combining the orthogonalized MS bands with the original high-
resolution PAN band. 
 
Gram-Schmidt Adaptive 
 
The Gram-Schmidt Adaptive (GSA) algorithm builds upon the Gram-Schmidt process by introducing 
adaptability to better handle variations in spectral characteristics. Here's a breakdown of how the Gram-
Schmidt Adaptive algorithm works for data fusion. Similar to Gram-Schmidt, we have two sets of data: 
multispectral (MS) bands and a panchromatic (PAN) band. MS bands are ordered and interpolated to 
the PAN scale, and the mean of each band vector is subtracted. 

● Synthetic Low-Resolution Approximation (IL): GSA starts with a synthetic low-resolution 
approximation of the PAN image (IL) as the initial vector in the orthogonal basis. 

● Orthogonalization Procedure: Like Gram-Schmidt, GSA proceeds by orthogonalizing one MS 
vector at a time. The chosen MS band is projected onto the subspace defined by the PAN band, 
and its orthogonal component is identified. 

●  Adaptive Scaling: The key innovation in GSA is the adaptive scaling factor for pan-sharpening. 
Instead of a fixed scaling factor, GSA adjusts this factor based on the maximum intensity values 
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within the hyperspectral bands. This adaptability ensures better preservation of spectral 
information. 

● Pan-sharpening and Inverse Transformation: Pan-sharpening is accomplished by replacing the 
synthetic low-resolution approximation (IL) with a histogram-matched version of the PAN 
image (P). The inverse transformation completes the pan-sharpening process. 

 
Methods discussion 
 
The Gram-Schmidt Adaptive (GSA) algorithm builds upon the Gram-Schmidt process by introducing 
adaptability to better handle variations in spectral characteristics. These techniques were originally 
designed for enhancing the spatial resolution of multispectral imagery. However, this approach involves 
testing these methods beyond their conventional application. Rather than pan-sharpening high-
resolution multispectral data, their efficiency was explored in the fusion of high-resolution (10 meters) 
multispectral data from Sentinel-2 with lower-resolution (30 meters) hyperspectral data from PRISMA. 
This unconventional application assesses the adaptability and performance of these methods in the 
context of combining diverse spatial and spectral characteristics.  
 
The selected fusion methods were evaluated according to their ability to preserve the spectral 
information of the original PRISMA hyperspectral data, while improving their spatial resolution. 
Specific spectral bands corresponding to the blue, green, red and near-infrared (NIR) regions were 
considered in the analysis. The choice of these specific regions was based on the availability of a 
resolution of 10 meters in these bands within the Sentinel-2 dataset. For the fusion process, the 
Sentinel-2 dataset provided the blue band (B2) ranging from 460.2 nanometres to 525.2 nanometres. 
This band was merged with the PRISMA dataset, specifically bands 9 to 17, which cover the same 
spectral range. The same selection process was followed for all four regions (blue, green, red and NIR) 
(Table 20). By combining these selected bands, the fusion process integrated 29 bands of the PRISMA 
hyperspectral data with the 4 bands of Sentinel-2. Using these fusion techniques, the study aims to 
demonstrate the effectiveness of the selected methods in enhancing the spatial resolution of PRISMA 
hyperspectral data for improved analysis and classification. 
 
 

Table 20. Sentinel-2 and PRISMA bands selection for the pan-sharpening algorithm comparison. 

Region Sentinel 2 PRISMA 

Blue Region Band_2 (460.2-525.2) nm B9-B17 (468-527.3) nm 

Green Region Band_3 (542.3-577.3) nm B20-B24 (550.9-583.8) 
nm 

Red Region Band_4 (649.6-679.6) nm B32-B35 (655.4-684.1) nm 

NIR Band_8 (780.3-885.3) nm B45-B55 (785.6-892) nm 
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Total No. Bands 4 29 

Resolution 10 meters 30 meters 

 
 
 
 

4.6.2. Deep Learning for HS-MS Image Fusion 
 

 
The followed approach for solving the HS-MS data fusion problem for PRISMA and Sentinel 2 images 
with an unsupervised Deep Learning framework, regarded the architecture proposed by Uezato et al. 
(2020) of a Guided Deep Decoder Network for Hyperspectral Super Resolution (GDD), applied on a 
Zero Shot Learning scheme. 
 
 
Problem Formulation 
 
The task denotes: 

● a low-resolution input image (PRISMA): 𝑌 ∈ 𝑅,×.×/ 
 
 
● a guidance image (Sentinel 2 MSI) : 𝐺 ∈ 𝑅0×1×2  

 
where C, W, and H represent the number of channels, the image width, and the image height, 
respectively. For HS Super Resolution w<<W, h<<H, c<<C 
 
In an unsupervised image fusion approach, the corresponding output can be estimated by solving the 
following optimization problem: 

 
𝜃𝑚𝑖𝑛	𝐿(𝑓3(𝑍), 𝑌, 𝐺)	

 
where X is estimated by a convolutional neural network (CNN)-based mapping function 
 

𝑋 = 𝑓3(𝛸)	
 

where fθ(Ζ) represents the mapping function with the network parameters θ, and Z is the input 
representing the random code tensor. In this formulation, only one input image Y and a guidance image 
G are used for the optimization problem, thus, training data are not required. X is regularized by the 
implicit prior of the network architecture. 
 
 
Deep Network Architecture – The Guided Deep Decoder (GDD) 
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GDD is composed of an encoder-decoder network with skip connections and a deep decoder network, 
as shown in Figure 38. The encoder-decoder network is similar to the architecture of U-net and 
produces the features of a guidance image at multiple scales. The multi-scale features represent 
hierarchical semantic features of the guidance image from low to high levels. The semantic features are 
used to guide the parameter estimation in the deep decoder. 
 

 
Figure 38. GDD network architecture. The blue layers represent the features of the encoder. The red 

layers represent the features of the decoder. The green layers represent the features of the deep 
decoder network. The semantic features of G are used to guide the features of the deep decoder in the 

upsampling and feature refinement units, URU and FRU (from Uezato et al., 2020).  

 
Upsampling refinement unit (URU):  Upsampling is a vital part of GDD.  URU incorporates an 
attention gate for weighting the features derived after upsampling and channel-wise normalization (CN) 
in the deep decoder. The bilinear upsampling used in GDD causes a strong bias to promote piecewise 
smoothness and tends to wash away the small objects or boundaries. GDD uses an attention gate to 
weight the features derived by the upsampling. The features from the guidance image are gated by a 1 × 
1 convolution (Conv), a leaky rectified linear unit (LeakyRelu), and a sigmoid activation layer (Sigmoid) 
to preserve the spatial locality of the features and generate the conditional weights (Uezato et al. 2020). 
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Figure 39. The internal structure of upsampling and feature refinement units (from Uezato et al., 

2020). 
 
Feature refinement unit (FRU):  FRU is different from URU in that the features of the deep decoder 
are weighted by the high-level semantic features of the guidance image. FRU promotes semantic 
alignment with the features of the guidance image, while URU promotes similar spatial locality. Using 
an attention gate, the high-level features are gated by a 1 × 1 convolution, a leaky rectified linear unit, 
and a sigmoid activation layer to generate the conditional weights. GDD enables the features of each 
layer in the decoder part to be conditioned on the semantic features from the guidance image at multiple 
scales. The attention gates at multiple scales emphasize salient features within each layer, leading to the 
semantic alignment between the output image and the guidance image (Uezato et al. 2020). 
 
HS Super Resolution Loss Function:  The loss function of the task was designed to preserve the 
spectral information from the HS image while keeping the spatial information from the MS image. 
For simplicity, the matrix forms of X, Y, G image arrays are denoted as 𝛸A, 𝑌A, 𝐺A,  respectively. 
Given the estimated HR - HS  𝛸A   image, the loss function can be defined as: 

 
𝐿(𝑋, 𝑌, 𝐺) = 𝜇 ⋅ ‖𝑋^ ⋅ 𝑆 − 𝑌^‖4& + ‖𝑅 ⋅ 𝑋^ − 𝐺^‖4& 	

 
Where ││.││F  is the Frobenius norm, S is the spatial downsampling with blurring and R is the 
spectral response function that integrates the spectra into the MS channels. The first term encourages 
the spectral similarity between the spatially downsampled X and Y. The second term encourages the 
spatial similarity between the spectrally downsampled X and G. µ is a scalar controlling the balance 
between the two terms (Uezato et al. 2020). 
 
GDD Network Preprocessing 
 
Zero Shot Learning Scheme: The application of a Zero Shot Learning scheme in an Unsupervised 
Deep Learning HS-MS fusion framework involves the spatial downgrading of the HS-MS image pair by 
a factor equal to the quotient of their respective spatial resolutions. For the PRISMA HSI - S2 MSI fusion 
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this factor f equals to 3, and the degradation model is the 3X3 block average. Thus, the derived datasets 
are: 
 

𝐻𝑆𝐼 ∈ 𝑅,×5
!
"6×5

#
"6 : The low-resolution HS image, spatially degraded PRISMA. 

 

𝑀𝑆𝐼 ∈ 𝑅0×5
$
" 6×5

%
"6 : The Guidance-high resolution MS image, spatially degraded Sentinel 2 

 
which feed the GDD network, along with the Ground Truth image: 
 
𝐺𝑇 ∈ 𝑅,×.×/: The initial PRISMA HS image, considered as the HR-HS image over which GDD is 
evaluated 
 
 
SRF resampling from Sentinel 2 to PRISMA: Spectral Response Functions - often abbreviated to 
'SRF' - describe how sensitive an instrument's photosensor is to radiation of a particular wavelength. 
Different photosensors have varying sensitivities to different wavelengths that can vary across the 
spectrum. This is the case in remote sensing instruments. SRF is a sparse matrix, in that for each row 
representing a sensor’s channel, it has non-negative values only on the columns that regard the 
wavelengths that correspond to this channel. In the formulation of the Loss function, R denotes the 
Spectral Response Function (SRF) which degrades output of the GDD Net, spectrally, in order to 
compare it with the Guidance image, the HR MS.  It can be seen as a mapping from MS to HS channels 
space, i.e. 𝐶	 ↔ 𝑐 
 

𝑅 ∈ 𝑅0×, 	
 
In HS-MS fusion problems, the SRF is simulated by the resampling of the SRF of the MS sensor, to the 
spectral resolution of the HS sensor. Regarding the applied fusion task, c equals the number of PRISMA 
HSI spectral channels, while C equals the number of Sentinel 2 MSI spectral channels. The spectral 
resampling function transforms the MSI instrument response, usually given in 1nm resolution, to an 
aggregated interval, the HSI spectral resolution, given by the full width half maximums (fwhm) of the 
new band positions. The function uses gaussian models defined by fwhm values to resample the high-
resolution data to new band positions and resolution. It assumes that band spacing and fwhm of the 
input data is constant over the spectral range. The interpolated values are set to 0 if input data fall 
outside by 3 standard deviations of the gaussian densities defined by fwhm. The Sentinel 2 SRF, as 
resampled to simulate PRISMA spectral resolution, is depicted on the following Figure 40. 
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Figure 40. Spectral Resampling of the S2A SRF to the PRISMA HSI spectral resolution. 

 
 
 
Algorithm Outline 
 

1. Provide Inputs 
● MSI 
● HSI 
● GT 
● R 

 
2. Set Parameters: the most important of them being, 

● factor : the spatial degradation factor 
● param_balance: the  µ parameter for the spatial-spectral balance in the loss function 
● method =    '2D' 
● pad   =     'reflection' 
● OPT_OVER =  'net' 
● num_c : the number of channels 
● LR: the learning rate 
● OPTIMIZER = 'adam': Adam optimization is a stochastic gradient descent method that is 

based on adaptive estimation of first-order and second-order moments. 
● num_iter = 30000 
● reg_noise_std = 0 
 

3. Set net: define GDD number of channels, network structure, squared L2 norm. downsampler 
etc 
 

4. Define closure: Define Loss Function, and Evaluation Metrics 
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Experimental Results:  

 
Hyper Pansharpening 
 
Various types of methodologies and approaches for increasing the spatial resolution of hyperspectral 
images while maintaining spectral information and resolution have previously been described. By 
analyzing and applying these methods of fusing PRISMA images with Sentinel-2 images, the results 
shown below were obtained. 
 
To determine the efficiency of various methods for improving spatial resolution and maintaining 
spectral details, different land covers, such as forests, crops, urban areas, and barren land, have been 
examined. The primary focus was to study the performance of data fusion methods in these distinct 
environments under a range of circumstances. To initiate the analysis, homogeneous regions within 
each land cover type have been identified and a 90x90 meter square grid considered with 9x9 pixels 
representing each landscape section's overall character. Within this confined area, the average values 
of these pixels were calculated in order to extract the core attributes of each land cover. 
 
The detailed investigation delved into the complexity of the spectral signatures, using the graphs below 
to visualize the reflectance patterns in the various bands (Figure 41, Figure 42). Each spectral signature 
on these graphs represented spatial enhancement and spectral richness, giving an overview. The 
research extended beyond visual inspection, presenting charts with measurements such as Spectral 
Correlation Mapper (SCM), Spectral Angle Mapper (SAM) and the useful space between two spectral 
signatures. These numerical analyses provided a quantitative perspective on the performance of each 
method. 
 

 
Figure 41. Left: Before and After Fusion for Forest area. Right: Before and After Fusion for Crop area. 
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Figure 42. Left: Before and After Fusion from Urban area. Right: Before and After Fusion for Barren 

Land area. 

 
 
All implemented algorithms take the two datasets as input and generate fused data with enhanced 
spatial resolution. Preliminary results demonstrate that the Gram-Schmidt Adaptive fusion algorithm 
exhibited promising results, providing more accurate and detailed information while preserving 
spectral information compared to other fusion methods. Finally, it can be stated that the performance 
of the fusion techniques was assessed using quantitative and qualitative evaluation metrics. Spectral 
Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and other spectral similarity measures were 
employed to compare the spectral signatures of the original and fused datasets. Spatial analysis 
techniques, including land cover classification, were also utilized to evaluate the enhanced mapping 
accuracy achieved by the fused dataset. 
 
The introduction of suitable metrics allowed to quantitatively estimate the performances of the different 
methods tested. Ultimately, the FIHS method emerged as the most impressive technique in our 
findings. It delivered a balanced performance across bands while creating a harmonious representation 
of reflectance that surpassed other methods. In terms of spectral correlation and angle mapping, FIHS 
achieved better results. FIHS method not only proved efficient but also demonstrated an enriched 
understanding of these complex relationships. 
 
An in-depth investigation of spatial improvement and spectral conservation, research thoroughly 
assessed the performance of data fusion techniques—Brovey, FIHS, Gram-Schmidt, and Gram- Schmidt 
Adaptive (GSA). The primary goal was to enhance spatial resolution while valuing the spectral subtleties 
found in PRISMA's hyperspectral data by incorporating Sentinel-2's multispectral information. 
 
Visual representations effectively displayed the subtle interplay of reflectance across bands, presenting 
a clear picture of spatial and spectral dynamics. At the same time, the quantitative metrics Spectral 
Correlation Mapper (SCM), Spectral Angle Mapper (SAM) and the area between two spectral signatures 
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provided valuable numerical indications, observable in Tables 21-24. As a result of this comprehensive 
evaluation, the FIHS method surfaced as the most proficient approach in striking a balance between 
enhanced spatial resolution and spectral accuracy. In measurable terms, FIHS has formed with an 
average value of SCM: 0.9969, SAM: 0.0738, Area: 0.8719. These numerical validations emphasized 
FIHS's method has dominated other data fusion methods. In conclusion, this study not only deepened 
the understanding of these methods but also reasserted the crucial role of data fusion in harnessing the 
full power of remote sensing applications. 
 

Table 21. Different methods performance for a Forest Area. 

Forest Area 

Methods SCM SAM Area 

GSA 0.8858 0.4779 1.54 

Brovey 0.9569 0.2936 2.88 

GS 0.9689 0.2468 1.54 

FIHS 0.9971 0.0753 0.63 

 
 
 

Table 22. Different methods performance for a Crop Area. 

Crop Area 

Methods SCM SAM Area 

GSA 0.9823 0.1858 3.39 

Brovey 0.9728 0.2262 4.82 

GS 0.9948 0.1004 2.09 

FIHS 0.998 0.0564 1.02 

 
 
 

Table 23. Different methods performance for a Urban Area. 

Urban Area 



D7.1 - Algorithm Theoretical Baseline Documents (ATBDs) and Product Specifications 

 

149 
 

Methods SCM SAM Area 

GSA 0.9108 0.3951 1.69 

Brovey 0.8817 0.4899 5.01 

GS 0.9541 0.213 1.71 

FIHS 0.9959 0.0817 1.07 

 
 
 

Table 24. Different methods performance for a Barren Land. 

Barren Area 

Methods SCM SAM Area 

GSA 0.9893 0.1402 0.85 

Brovey 0.8771 0.5008 5.00 

GS 0.9988 0.0448 0.36 

FIHS 0.9966 0.0818 0.77 

 
 
Deep Learning for HS-MS Fusion 
 
The experimental design was carried out in order to obtain a proof of concept for the feasibility of using 
unsupervised Deep Learning Image Fusion on "real" Earth Observation data, with an evaluation carried 
out in a zero-shot learning approach. In order to study and evaluate the above concept in many different 
configurations, given the increased computational time required for training in these cases, the 
experimental implementation on patches of located and restricted areas of interest was chosen. 
 
Thus, for the HS-MS, PRISMA and Sentinel 2 image pair with an acquisition date of 26/05/2020, the 
preprocessing steps outlined in the previous Chapter 4.5. were implemented. For the dimensions of the 
image patches, further consideration had to be given to the condition imposed by the Deep Learning 
architecture to be implemented. The spatial dimensions of the patches should be integer multiples of 
32. In the case of our data the scale factor equal to 3 could not meet the above condition and therefore 
the Sentinel 2 data were resampled to a spatial resolution of 7.5 m in order to apply a scale factor equal 
to 4. 
 
The synthetic data for zero shot learning were created by spatial degradation of the original HS and MS 
images. For the understanding of image degradation at a lower resolution, significant is the contribution 
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of the imager Point Spread Function (PSF). The blurring that occurs through the degradation process 
is formulated as an image convolution with the PSF kernel.  According to Wang et.al 2020, experimental 
results showed that the PSF effect influences downscaling greatly, and that downscaling can be 
enhanced obviously by considering the PSF effect. However, the actual PSF of the satellite image sensor 
is an unknown matrix that needs to be simulated in the degrading process, by the means of a low pass 
convolution. The idea of Gaussian smoothing is to use this 2D distribution as a simulated PSF. As a 
result, the image degradation scheme included: 
 

● low pass filtering through an application of a Gaussian convolution, with a sigma value equal to 
2. Gaussian smoothing simulates the Point Spread Function (PSF) effect in image downscaling. 

● resampling to a lower spatial resolution for HSI and MSI, with a degradation factor equal to 4. 

 

 
Figure 43. Gaussian 2D convolution kernel. A PSF simulation for zero shot degradation scheme. 

 
As a result, the following image patch representations were created (Figure 44): 
 

1. 	𝑀𝑆𝐼 ∈ 𝑅7×8'&×8'& : at 7.5 m spatial resolution, not used in GDD 

2. 	𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑	𝑀𝑆𝐼 ∈ 𝑅7×'&9×'&9:  at 30 m spatial resolution, the synthetic Guidance 
image(G), input to GDD network 

3. 	𝐻𝑆𝐼 ∈ 𝑅':&×'&9×'&9:  at 30 m spatial resolution, the ground truth image for evaluation 
of GDD model 
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4. 	𝐷𝑒𝑔𝑟𝑎𝑑𝑒𝑑	𝐻𝑆𝐼 ∈ 𝑅':&×)&×)&:  at 120 m spatial resolution, the synthetic HSI (Y) used 
in GDD model loss function optimization during training 

 
Furthermore, a matrix representation of the Spectral Response Function:  𝑅 ∈ 𝑅7×':&,was used for the 
spectral downsampling of the GDD output, at the loss function calculation. 
 

 
Figure 44. Image patch data for GDD training - evaluation. 

 
 
The GDD model experiments for HS-MS image fusion were conducted on an NVIDIA GeGorce 
GTX1650 with 4GB memory. Depending on the parameterisation of each take, the training task 
duration ranged from 1,5 to 2 hours of computational time. 
 
Initial trials of the GDD code were tested with the following parameters: 

● factor = 4 (spatial degradation factor) 
● param_balance = 0.4 (spatial vs spectral balance in loss optimization) 
● number of network channels = 80 
● Learning Rate = 0.01 
● Data was fed into the model in batches (BATCH_SIZE=4) by using a data generator. 
● number of iterations = 2000 
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● reg_noise_std = 0.03  
● thresh_v = 0.00001 (loss function threshold) 
● n_layer = 5 (log2 32) 

 
The evaluation of the fusion process regarded the following metrics: 
 

● the Peak Signal to Noise Ratio (PSNR), an expression for the ratio between the maximum 
possible value (power) of a signal and the power of distorting noise that affects the quality of its 
representation. The higher the PSNR, the better a degraded image has been reconstructed to 
match the original image and the better the reconstructive algorithm performed.  This would 
occur in the process of minimizing the MSE between images with respect to the maximum signal 
value of the image. 

● the Mean Squared Error (MSE) or else the optimisation error, as a loss function measure during 
the training process, comparing the output of the GDD with the Degraded HS image input 

● the Root Mean Square Error (RMSE), or else an independent data validation error, which is 
obtained by the comparison of the fused image of zero shot learning, with the original HSI at 30 
m spatial resolution (HR-HS image). RMSE can be evaluated against the ground truth image 
bands statistics, mean and standard deviation, of reflectance values, to gain insight about the 
relative error of the fusion reconstruction in regards with the HR-HS image dynamic range. 

● the Structural Similarity Index (SSIM), another validation error measure for the evaluation of 
the similarity of the fused image of zero shot learning, compared with the original HSI at 30 m 
spatial resolution. In this aspect, image degradation is considered as the change of perception in 
structural information, with a given emphasis on the spatially close pixels. It also collaborates 
with some other important perception-based facts such as luminance masking and contrast 
masking. 

 
The experimental results from this initial testing of the GDD algorithm for HS-MS image fusion with a 
zero-shot learning scheme, provided evaluation for reconstructing a degraded HS image to its original 
spatial resolution, with the aid of a degraded MS guidance image. The performance of the task, still after 
a lot of algorithm parameter tweaking, was disappointing. The evaluation metrics history along training 
iterations is shown on Figure 45 while their final values were: 
 

PSNR=22.755 
MSE=0.0084 
RMSE = 0.1454 
SSIM = 0.5823 

 
Loss optimization converged quickly to a minimum, at mere 1000 iterations, but still the HS image 
didn’t achieve a faithful reconstruction while it was mainly dominated by noise, something evident by 
the low PSNR values. Structural similarity between result and ground truth was equally low, while the 
perceived error was high relatively to the HS reflectance statistical distribution. 
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(a) 

(b) 
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(c) 

(d) 
 
Figure 45. Evaluation metrics of GDD image fusion, at the first take of experiment parameterisation and 
training. PSNR (a), MSE (b), RSME (c), SSIM (d) 
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On a second iteration of the fusion experiment, no modifications were made to the model parameters, 
but evidence from the former evaluation suggested a slight tweaking on the calculation of the Loss 
function. Providing a strong emphasis on the first term the Loss L. Immediately, the first attempts on 
this 2nd take of GDD training showed a great improvement on the HSI reconstruction. Evaluation 
results of this second take of training were: 
 

PSNR=42.591 
MSE=1.34 * 10-6 
RMSE = 0.0147 
SSIM = 0.9663 
 

while the metrics history along training iterations is shown on Figure 46. The performance of the deep 
network was still considered suboptimal, especially in regards with the validation RMSE, which had a 
relatively high value compared with the standard deviation of the reflectance values, along ground truth 
HS image bands. On the following table, the Fused HS image bands statistics are presented, aggregated 
on contiguous spectral regions of visible (RGB), Near InfraRed (NIR and NIR-SWIR), and Shortwave 
InfraRed (SWIR1, SWIR2), in comparison with the band statistics of the input HS PRISMA image. As 
concluded from the HS band statistics summary, the evaluation RMSE was considered high, especially 
in regards with the dynamic range of reflectance values at the Visible HS bands. 
 
 

Table 25. HS image aggregated bands statistics. 

 FUSED HSI-MSI PRISMA HSI 

HS Reflectance Bands Aggregation 
(nm) Mean Stdv Mean Stdv 

BLUE (400-500) 0.026 0.011 0.045 0.019 

GREEN (500-600) 0.068 0.019 0.084 0.027 

RED (600-700) 0.118 0.031 0.112 0.037 

RED EDGE (700-800) 0.385 0.054 0.298 0.041 

NIR (800-1200) 0.506 0.069 0.368 0.054 

NIR-SWIR (1200-1350) 0.565 0.080 0.389 0.060 

SWIR1 (1470-1780) 0.454 0.071 0.294 0.055 

SWIR2 (2000-2380) 0.332 0.055 0.209 0.051 
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(a) 

(b) 
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(c) 

(d) 
Figure 46. Evaluation metrics of GDD image fusion, at the second take of experiment 

parameterisation and training. PSNR (a), SSIM (b), RSME (c),MSE (d) 
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At the prediction stage of the fusion process, HS-MS images at their original spatial resolutions were 
used as inputs for the inference of the HR-HS image at 7.5 m ground sampling distance.  The prediction 
results of the HS-MS Fusion, for an image patch from the experimental case study, is depicted in Figure 
47(4). 
 

 
Figure 47. Image patch data for GDD prediction.(1) Multispectral Sentinel 2, (2) CoRegistered 

Hyperspectral PRISMA, (3) VHR Satellite Basemap, (4) HS-MS image fusion output. 
 
 
An observable interpretation which is supported as well by the reflectance statistics of Table 25 can be 
derived by Figure 48, which shows RGB composites at the SWIR and Red Edge part of the spectrum, 
from the input HS and MS imagery in a visual comparison with the Fused HS-MS image reconstruction.  
Visible bands show a spectral distortion with lower reflectance values, while the Red Edge, NIR and 
SWIR regions are overestimated, with higher reflectance values in general.  In regards with the spatial 
detail reconstruction, the fused image has embodied a great deal from the spatial features of the high 
resolution MS image, showcasing however a blurring effect, present probably because of the bilinear 
interpolation applied on the upsampling 3x3 convolutions of the GDD encoder -decoder network. 
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Figure 48. RGB composite representations, from the input HS and MS imagery in a visual comparison 

with the Fused HS-MS image reconstruction, at the SWIR and Red Edge part of the spectrum. 
   
 
Issues and Next Steps: 

In conclusion, the evaluation from the HS-MS image fusion experiments performed on PRISMA-
Sentinel 2 data that were obtained from the case study area of interest, indicated that some further 
modification of the Deep Network GDD architecture originally developed, is required for the 
enhancement of its performance. The aspects of both spectral and spatial similarity between reference 
ground truth and the HS-MS fused images, is obviously improvable, by a reduction of the RMSE to 
acceptable levels, and an increase of the fidelity of the SSIM. 

 
● A first step is the continuation of testing and tuning on the existing GDD architecture, with 

targeted modifications to the calculation of the Loss function, as well as to the values of 
associated hyper parameters, in order to improve the values of the evaluation metrics. 

● In a next step, an assessment of the spectral content of the channels of the resulting HS-MS 
Fused image is legitimate, by obtaining spectral signatures from defined land cover targets, and 
a comparison between primary data HS-MS data.  

● A final important step that follows the previous ones, once the results of the process are 
improved and become significant, is the configuration of the code for training and prediction of 
the GDD model with parallel processing for the purpose of using it in HS-MS Fusion applications 
on whole image tiles. 

 
4.6.2.1. Deep Learning for HS-MS Image Fusion - Update iteration 
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During the evaluation of the accuracy achieved by the HS-MS Fusion method using neural networks, 
the need for further modifications was identified in order to obtain improved results, mainly in the part 
of the spectral fidelity with which the radiometric reflection is reproduced.It was decided that the 
modification should not only concern the tuning of the hyperparameters of the model, since this was 
already tested beforehand with very small improvements in the final result, but moreover to include 
changes in the Loss Function of the Guided Deep Decoder. Thus the original relationship was modified 
to 

𝐿(𝑋, 𝑌, 𝐺) = 𝜇 ⋅ ‖𝑋̀ ⋅ 𝑆 − 𝑌̀‖4& + 𝜎 ⋅ ‖𝑅 ⋅ 𝑋̀ − 𝐺̀‖4& 	
 
allowing parameterization of the relative weighting between the two terms related to spectral and spatial 
similarity. A range of values m and σ were then tested to evaluate the optimal combination that 
minimizes the rmse error in test validation. 
 
During the hyperparameter tuning of the GDD the following parameters, provided optimal error: 
● factor = 4 (spatial degradation factor) 
● param_balance µ = 0.62  
● param_balance σ = 0.34  
● number of network channels = 80 
● Learning Rate = 0.01 
● Data was fed into the model in batches (BATCH_SIZE=4) by using a data generator. 
● number of iterations = 10000 
● reg_noise_std = 0.08 
● thresh_v = 0.00001 (loss function threshold) 
● n_layer = 5 (log2 32) 

 
There was a slight improvement in the global evaluation metrics, which were as follows :  
 

PSNR=44.83 
MSE=1.02 * 10-6 
RMSE = 0.0108 
SSIM = 0.9841 

 
At the prediction stage of the fusion process, HS-MS images at their original spatial resolutions were 
used as inputs for the inference of the HR-HS image at 7.5 m ground sampling distance.  The prediction 
results of the HS-MS Fusion, for an image patch from the experimental case study, is depicted in Figures 
XXX25 and XXX26 using a pseudocolor composite representation at different parts of the VIS - NIR - 
SWIR spectrum, in comparison with the initial fusion results that emerged before the iteration updates 
to the GDD. 
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Figure XXX25. Image patch data for GDD prediction of 2nd iteration. Pseudocolor composite 
rendering  using NIR, RED, Green channels for RGB.(1) Multispectral Sentinel 2, (2) CoRegistered 

Hyperspectral PRISMA, (3) HS-MS image fusion output 1st iteration, (4) HS-MS image fusion output 
2nd iteration. 
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Figure XXX26. Image patch data for GDD prediction of 2nd iteration. Pseudocolor composite 
rendering  using SWIR2,SWIR1,NIR channels for RGB.(1) Multispectral Sentinel 2, (2) CoRegistered 
Hyperspectral PRISMA, (3) HS-MS image fusion output 1st iteration, (4) HS-MS image fusion output 

2nd iteration. 
 

 Spectral Signatures  
 
In relation to the above evaluation of the performance of the HSI - MSI fusion process on the data, the 
global metrics obtained as well as the qualitative inspection of the result on RGB pseudocolor 
composites provide a limited overview of the reconstruction fidelity. It was considered important at this 
point to further investigate the performance of the data fusion on the individual spectral channels in 
order to draw some conclusions about the usefulness of the resulting product in remote sensing 
mapping applications. It is a fact that the fusion process introduces spectral distortions and it is 
important to see in which parts of the spectrum these occur, to what extent they are significant, and how 
they may be varied in the spectral targets of the earth's surface. 
 
 
Initially, the RMSE error obtained in the zero shot validation was calculated per spectral band. To allow 
comparison between channels, the normalized mode was calculated in terms of the standard deviation 
of each channel.  Thus, for example, normalized RMSE values in the range [0.25,0.5] indicate that the 
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active range of reflectance values in the channel in question is, double to quadruple the range of the 
error, and this means that the spectral reconstruction is quite satisfactory. Normalized RMSE values in 
the range (0.5,0.75) suggest that the active range of the reflectance values in this channel is 1.3 to 2 
times larger relative to the range of the standard deviation of the error, which characterizes the 
performance in this channel as good to satisfactory. In the lower limit, the performance is therefore 
satisfactory, while in the upper limit it is considered moderate. Finally for Normalized RMSE values 
greater than 0.75 the range of error tends to the same range of image reflectance values, which indicates 
a small signal to noise ratio and unsatisfactory image fusion performance for this channel. 
 

 
 
Figure XXX27. Normalized RMSE of HS-MS Fusion across spectral channels in BOA Reflectance units  
 
The outcome of this analysis is given in figure (XXX27), which shows the distribution of Normalized 
RMSE in the hyperspectral channels. It is obvious that the performance is not homogeneous, but shows 
different qualitative characteristics in the different regions of the spectrum. For example, the HSI- MSI 
fusion seems to perform quite well in the green, red, red edge regions, to be judged satisfactory in the 
NIR and outermost SWIR2 regions, while in the intermediate region (1000 - 2100 nm) the performance 
is judged moderate. A possible explanation for the reasons for this difference in Normalized RMSE 
could be the spectral coverage provided by the multispectral data of Sentinel 2 MSI, as the 900 - 1600 
nm region is missing, as well as the relatively larger error introduced by the Sentinel 2 band fusion 
preprocessing at 10m spatial resolution, in the SWIR1 channel (1610 nm) compared to SWIR 2 (2190 
nm). 
 
On the level of hyperspectral remote sensing applications, the result of the HSI-MSI fusion could be 
used with relative safety in the calculation of vegetation radiometric indices in regions where the 
Normalized RMSE is small.  Applications involving Carotenoid and Anthocyanin Content mapping 
focus on the green and red edge regions of the spectrum, and to this extent, the hyperspectral data 
resulting from the fusion can be useful, with reasonable accuracy. This is particularly true for indices 
such as CRI (Carotenoid Reflectance Index), which is calculated exclusively in narrow bands within the 
green region, and where the use of multispectral data is not sufficient in terms of spectral resolution. 
The same conclusion can be drawn for leaf/canopy chlorophyll content estimation, and Dry Matter 
Pigment mapping, where the radiometric indices focus on the green, red and red edge regions. The 
applications related to the properties of the leaf/canopy structure further involve the NIR region, which 
has a higher error. Thus the calculation of radiometric indices , with the typical example of the well-
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known NDVI varieties would be better done directly from the multispectral Sentinel 2 image. Finally 
applications involving Leaf Water Content mapping use radiometric indices in the NIR and SWIR 
regions and due to the unsatisfactory performance of fusion in these channels, it would be advisable to 
avoid the use of fused hyperspectral products. 
 
In a more in-depth quality control, it was considered appropriate to study the spectral signatures 
presented by targets of interest from the Earth's surface, to determine the divergence they present 
between the primary hyperspectral image and the final product of the HSI - MSI fusion, for all their 
channels. In the absence of ground truth field data on the type of land cover in the image under study 
an unsupervised classification approach was followed to identify classes of interest after using photo 
interpretation. Principal Component Analysis (PCA) was applied to the PRISMA hyperspectral image 
for a linear dimensionality reduction using Singular Value Decomposition of the data to project it to a 
lower dimensional space. The input data is centered and scaled to its standard deviation, for each feature 
before applying the SVD. 
 
The selection of Principal Components for unsupervised analysis was based on the explained variance 
criterion that they cumulatively contribute. According to figure XXX28 that follows below, it was found 
that the use of the first three PCs, in the case of the studied image, explains 98.6 of the observed 
dispersion of values, condensing the set of useful spectral information, while as found all the rest PCs 
depict large noise contributions to the data. 
 

 
 

Figure XXX28. Principal Components Analysis of the PRISMA HS image. Explained Variance of the 
first 10 latent variables (PCs) 

 
 
The classification of the PRISMA hyperspectral image into land cover classes, in an unsupervised 
manner, was performed using the k-means clustering method. The adjustable hyperparameter was the 
number k of optimally separable clusters, which was tuned through the use of silhouette analysis. 
Silhouette analysis can be used to study the separation distance between the resulting clusters. The 
silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring 
clusters and thus provides a way to assess parameters like number of clusters visually. This measure has 
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a range of [-1, 1]. Silhouette coefficients (as these values are referred to as) near +1 indicate that the 
sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very 
close to the decision boundary between two neighboring clusters and negative values indicate that those 
samples might have been assigned to the wrong cluster.  
 
As a result , the classification into 8 unsupervised classes was implemented, for which a label was then 
given through photo interpretation, using the very high resolution google basemap. Among others, the 
following classes of interest were recognized: :  
 
● Bright Soil 
● Mixed Bright Soil and Artificial Surfaces  
● Dark Brown Soil 
● Dense Vegetation 
● Mixed Soil and Vegetation 
● Mixed Barren and Broadleaf vegetation 

 
Accordingly, sampling locations  were selected to obtain the spectral profiles for the above classes from 
the 2 images under study, the PRISMA and the fused hyperspectral image. In the figures that follow 
(XXX28 to XXX31) the spectral profiles obtained for the most important classes of interest are 
presented in comparison. The spectral curve of the raw PRISMA image is shown in red and that of the 
HSI-MSI fused image in green. The y-axis shows the reflectance values, and the x-axis the spectral 
channels, in ascending number, Visible (bands 1-31), Red Edge (bands 32 - 40), Near InfraRed (bands 
41 - 70), Short Wave Infrared (bands 107 - 173). According to the observed pattern, the same conclusions 
as in the Normalized RMSE per band analysis hold true. In addition, it is clear that there is a difference 
in the observed deviation between the 2 HS images, that depends on the type of spectral target under 
consideration. Spectral targets with mixed land cover appear to show smaller discrepancies between the 
PRISMA raw acquisition and the HSI-MSI Fused image,which can be considered expected given the 
smoothing effect observed during the fusion process and the larger pixel size of the PRISMA image. 
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Figure XXX28.  Spectral Profile curves comparison between PRISMA (red) and  the Fused HS-MS 

image (green), on High Albedo Soil ground target. The spectral  sampling location on Google Basemap 
and the PRISMA imagery. 
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Figure XXX29.  Spectral Profile curves comparison between PRISMA (red) and  the Fused HS-MS 
image (green), on Low Albedo Soil ground target. The spectral  sampling location on Google Basemap 

and the PRISMA imagery. 
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Figure XXX30.  Spectral Profile curves comparison between PRISMA (red) and  the Fused HS-MS 
image (green), on Dense Vegetation ground target. The spectral  sampling location on Google 

Basemap and the PRISMA imagery. 
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Figure XXX31.  Spectral Profile curves comparison between PRISMA (red) and  the Fused HS-MS 
image (green), on Mixed Soil and Broad leave Vegetation ground target. The spectral  sampling 

location on Google Basemap and the PRISMA imagery. 
From the evaluation of the spectral profiles, the following conclusions can be drawn regarding the 
usefulness of the fused product in agricultural applications :  
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● The potential that the HSI-MSI Fused image can offer for quantitative mapping of biophysical 
parameters of cultivation in high resolution, through the use of PROSAIL inversion models, does 
not seem to be particularly realistic. This is concluded from the relatively large deviation that 
the curves show in their overall spectral dimension. So in the field of crop traits, the most 
appropriate solution is the use of radiometric vegetation indices described above and their 
reclassification into quality classes (high, mid, low) based on empirical value limits that 
characterize them. 
 

● From the point of view of thematic mapping applications, such as image segmentation or even 
supervised classification of land cover and crops at object or pixel level, the prospects of HSI-
MSI Fused data could be more promising since the greater spectral resolution and higher spatial 
resolution are still advantages, which make their use more efficient than multispectral in terms 
of separability of spectral signatures. The above hypothesis, in order to be validated, needs to be 
established through classification benchmarking and the use of reliable ground truth data. 
 

5. Inversion of RTMs for Biophysical Parameters 
 
Objectives:  

Radiative Transfer Models (RTMs) have gained considerable attention in several fields, including 
remote sensing (Kganyago et al., 2022), atmospheric and environmental science. RTMs simulate the 
interaction of electromagnetic radiation with different mediums, providing valuable information on the 
physical and optical properties of these mediums. Inversion techniques based on RTMs have a critical 
role in retrieving these properties from measured data. 

Biophysical variables refer to measurable physical properties of living organisms or ecosystems that are 
used to quantify and understand their biological processes and interactions with the environment. 
These variables often encompass characteristics such as leaf area index (LAI), vegetation cover, 
biomass, and canopy structure. Biophysical variables play a crucial role in remote sensing and ecological 
studies as they provide valuable insights into the health, productivity, and dynamics of vegetation and 
ecosystems (Elwadie et al., 2005). They are widely used in applications such as vegetation monitoring, 
land cover classification, carbon sequestration estimation, and climate change studies. RTMs allow to 
estimate the relationship between spectral reflectance and some vegetation characteristics as: 

● Leaf Area Index (LAI) is a parameter used to describe the intrinsic properties of the canopy. It 
is strictly related in a non-linear way to the reflectance and is, however, unrelated to the 
observation conditions. (Duan et al., 2014). 

 

5.1. In Situ Data of Biophysical Parameters 

 
Experimental Setting: 

In order to be able to test and validate the algorithms and data produced by the project, a case study 
was defined that included a collection and analysis of ground data. The basic requirements of this data 
collection were: 
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● Site location 
● Time period 
● Data type 

 
Given previous collaborations with some local partners (University of Nairobi and ESIPPS), Kenya and 
Uganda were selected as the pilot countries for the measurement campaigns, identifying Narok and 
Ahero as the main areas of interest for Kenyan country (Figure 49), and the eastern part of Uganda. 
This choice was mainly related to the availability of observation of the crops identified by the project 
(i.e. wheat, maize and rice) and that these were logistically reachable and not too widely dispersed across 
the territory. 
 
The time period for measurements is closely linked to the phenological cycle of the crops mentioned, 
identified between the months of May and August (between sowing and harvesting). Several 
measurement campaigns were carried out, at different times within the identified time period, in order 
to be able to acquire data at different phenological phases of the crops. 
 
Different types of data were needed in order to validate and compare satellite data and data products. 
Mainly we can divide them from a spatial and a physical point of view: the former necessary in order to 
identify the pixels corresponding to the ground data on the image, the latter in order to compare the 
data produced by the algorithms developed in Afri4Cast with the physical data acquired in the field. 
position, perimeter and classification of the fields; 
 

● LAI measurements; 
● chlorophyll content measurements; 
● collection of vegetation samples for visual and laboratory analysis. 

 
Three measurement campaigns were carried out in Kenya, in mid-June, mid-July and mid-August of 
2023 respectively, in which 151 maize fields, 128 wheat fields and 252 rice fields were mapped and 
considered for the Crop Growth Model. When available, information about the crop variety, sowing and 
harvest dates, crop density, presence of irrigation, fertilizer use and final field yield was acquired for 
each field. 
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Figure 49. Field campaign sites respectively in Narok (left) and Ahero (right) areas. 

 
 
As for the measurement campaigns in Uganda (Figure 50), three missions were carried out: between 
June and September 2023, in July 2023 and at the end of January 2024. 
 
 

 
Figure 50. Field campaign sites in the East part of Uganda. 

 
The field measurements performed by the different teams used specific instrumentation, namely: the 
LI-COR LAI 2200c for LAI measurements and the Dualex for chlorophyll content (Figure 51). 
While for the Dualex the measurement procedure is rather simple, it is sufficient to insert a leaf inside 
the instrument clip to obtain a measurement, for the LAI it will be necessary to follow a more accurate 
procedure: for each measurement the instrument has to be calibrated against the current lighting 
conditions. 
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Figure 51. Instruments used for field campaigns. Respectively: on right, the LI-COR LAI2200c for LAI 

measurements and on left, the Dualex for chlorophyll content measurements. 
 
 
In order to be used in the validation of the satellite data, all measurements performed, both 
instrumental and sample collection, had to meet certain requirements. Given the characteristics of 
satellite images in terms of pixel spatial resolution, all fields that were considered in the campaign had 
to have a minimum size of 40x40m, so as to be sure of obtaining pixels completely within the field under 
examination. Considering also a potential misregistration of the Sentinel-2 image of 1 pixel. This 
requirement also serves to avoid contamination from objects outside the field, such as roads, buildings, 
adjacent fields with different crops, etc. 
 
This premise translates into the need to carry out the three different measurements/samples in three 
spots sufficiently inside the field and not close to the perimeter. Furthermore, these should be acquired 
in areas as homogeneous and dense as possible. Each of the instruments used, in addition to measuring 
the physical data, also records the geographical position of the measurement thanks to the built-in GPS. 
 
All the data acquired in the various field campaigns were subsequently reprocessed in order to extract 
and put together only the information strictly necessary for the project, so that it could be easily used 
during the analysis and validation phases. 
 
Issues and Next Steps: 

Following the measurement campaign, the necessary satellite images were obtained to process and 
validate the algorithms developed by the project teams. During this process, a major (well known in 
remote sensing) problem arose: all the images acquired for the two sensors selected for this study 
(PRISMA and Sentinel-2) turned out to be unusable due to cloud cover. This problem mainly afflicted 
the Narok area where the data on maize and wheat had been collected (Figure 52). 
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Figure 52. PRISMA acquired images on the AOI. In the red circle the Narok area with no acquisitions. 
 
 
This led to other solutions being analyzed in order to continue the analysis. Other sensors with similar 
characteristics to PRISMA and Sentinel-2 were considered that could be used for the extraction of the 
various indices. Specifically, EnMAP imagery, to compensate for the lack of PRISMA images, and 
Planet, to compensate for the lack of Sentinel-2 images. 
 
Unfortunately, even for EnMAP no cloud-free images were found in the areas of interest during the 
period of the ground campaigns, but it was still taken into account for future ones and as support for 
PRISMA. For this purpose, the project was submitted on the EnMAP platform in order to be able to 
request specific acquisitions in the areas of interest, and the first images were already obtained. 
 
 

5.2. PROSAIL to LAI Inversion 

 
PROSAIL, as already mentioned above, is a fusion of two widely used models: PROSPECT and SAIL. 
PROSPECT provides a biochemical representation of an individual leaf in the spectral range between 
400 and 2500 nanometers. This model, which originally included a handful of parameters, has been 
extended over the years to include more leaf pigments such as chlorophyll a and b (Cab), carotenoids 
(Ccx), anthocyanins (Canth), brown pigments (Cb), in addition to the leaf water content (Cw) and dry 
matter content (Cdm) and to the leaf structural parameter (N). 
 
Scattering by Arbitrarily Inclined Leaf (SAIL) is a turbid medium model which allows us to represent 
the interaction of electro-magnetic radiation with the leaf canopy and the underlying soil represented 
as infinitely extending 1-D layers. In addition to the parameters which describe the canopy, such as the 
leaf area index (LAI), and leaf inclination distribution function (LIDF), and to the parameters that 
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describe the sun-viewer geometry (Sun Zenith Angle, Viewer Zenith Angle, Relative Azimuth Angle), 
SAIL requires the leaf reflectance and transmittance in order to run. These two are provided by the 
PROSPECT model as outputs, which is what allows the two models to run as a combination. In addition, 
SAIL also allows to freely model the underlying soil layer. This can be done either by using a custom soil 
model (i.e., by providing directly the soil reflectance spectrum ρsoil in the range 400-2500 nm), or by 
mixing pre-loaded dry and wet soil spectra using a soil brightness (αsoil) and a soil dryness parameter 
(psoil). 
 
With up to 16 input parameters, PROSAIL calculates the bidirectional reflectance of the canopy in the 
previously described range, in 1 nm increments, considering biophysical and biochemical parameters 
of the plant and geometric factors related to the observation mode. It has been widely used in forward 
mode, where canopy reflectance is calculated with various input parameter combinations for different 
research objectives. Studies employing PROSAIL in forward mode have explored sensitivity to factors 
like red edge position (REP) of vegetation, leaf optical properties, observation geometry, canopy 
architecture, soil background reflectance, and atmospheric conditions. The model has also been 
leveraged for designing new vegetation indices. Its usage in inverse mode, i.e., to infer the value of 
biophysical parameters from observed reflectances, is rarer but of great interest. Nevertheless, the 
inversion problem is heavily ill-posed and implies significant challenges both in terms of performance 
and in terms of model parametrization. 
 
Challenge:  

The core idea is based on a coupling scheme of PROSAIL as a well-known RTM with fast and an efficient 
machine learning regression algorithm. Using ML methods directly to extract biophysical parameters 
is rarely viable, due to the scarcity of in situ observations which can be used to appropriately train the 
models. 

Vegetation modeling strategy was based on Danner et al., (2021) and Pampanoni et al., (2022), which 
can be considered the state of the art regarding LUT-based approach and ML inversion for LAI from 
satellite images, based on the PROSAIL-adjacent RTMs. Coupling a classical LUT-based approach with 
ML inversion allows us to keep the underlying physical foundation provided by the RTM, and to greatly 
simplify the inversion procedure by making use of the ML inversion. This has also the added benefit of 
greatly shortening the inversion times, since most of the heavy calculations are made during the training 
of the model. The combination of PROSPECT-D and 4SAIL is used to model croplands, which are 
assumed to be homogeneous vegetated pixels. To model the cropland understory, the pyprosail package 
was tested with dry and wet soil spectra in different proportions using the psoil parameter. 

The RTM inversion strategy applied to these two model combinations is based on the use of LUTs, again 
similarly as Danner et al., (2021). Before describing the methodology adopted to create and invert the 
LUTs, a sensitivity analysis of the two model combinations was performed in order to verify that the 
model is sensitive to the variables that allow us to calculate the LAI, and in particular to identify the 
ideal Sentinel-2 and PRISMA channels to use to successfully perform the inversion. 

Approach:  

Before attempting to retrieve the biophysical parameters from satellite observations using a model 
inversion technique, it was mandatory to verify the feasibility of the retrieval on a variable-by-variable 
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basis. If a variable does not have any significant effect on the variation of the model output, it would be 
very difficult to invert it, because the model will barely react even to large variations of the variable. To 
this end, Global Sensitivity Analysis (GSA) was applied (Sobol, 2001, 1993), often used to quantify the 
effect of the uncertainty of a variable on the uncertainty of the model output (Saltelli, 2002). In 
particular, the Sobol method allowed an overall evaluation with first-order sensitivity indices, which 
quantify the contribution of each variable per se, i.e. while all the other variables are kept constant, and 
higher-order sensitivity indices that account for the interactions between variables. 

The possibility to take into account the interactions between variables is fundamental, because some 
variables that may appear to be not significant at the first-order, may become significant through 
interactions. The total-order sensitivity index of the i-th variable is the sum of the first-order sensitivity 
index of that variable and of all the higher-order sensitivity indices associated with its interactions with 
the other variables. 

These calculations have been carried out using the SALib Python library (Herman and Usher, 2017), 
which makes it straightforward to construct the necessary sequences for each model parameter through 
the Saltelli module, requiring only the definition of the variation interval of each variable as an input. 
The module returns quasi-random, low-discrepancy sequences calculated in order to sample the 
parameter space as uniformly as possible by exploiting Saltelli’s sampling scheme, which is an 
improvement of Sobol’s (Herman and Usher, 2017). The sequences are then used as inputs for the 
pyprosail Python library, and the resulting outputs are run through the sobol.analyze function which 
performs the Sobol Global Sensitivity Analysis returning both first-order indices and total-order indices. 

 

Methodology:  

Generation of the LUTs 
 
To generate the LUT, the PROSAIL model was run in forward mode to simulate canopy reflectance for 
an appropriate number of parameter combinations. The LUT calculation process took place as follows: 

● Definition of the LUT target size: LUT sizes were tested, ranging from 1.000 to 200.000 samples. 
A LUT size of 10.000 parameter combinations were found to achieve a good compromise 
between the computer resource requirement and the accuracy of canopy variable estimation 
(Weiss et al., 2004). The 10,000 parameter combinations were randomly generated with 
uniform or normal distributions and specific ranges for the variables. 

● Definition of the LAI minimum and maximum values. 

● Creation of first-guess distributions for each variable: after setting a seed for the random number 
generator, independent distributions of values were created for each model parameter. 

● Elimination of unlikely combinations based on ecological rules (Quan, Yebra 2021). 

● Sample selection: with an adequate number of samples guaranteed, in order to match the LUT 
size to the target sample size, a selection among the available profiles of those that generate an 
equal number of LAI samples in a number of 10%-wide LAI bins between the minimum and 
maximum target LAI values. This ensured that an equal number of profiles in each of these bins 
was held, and therefore profiles that generate different ranges of LAI were sampled equally. 
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● LUT calculation: the reflectance spectra outputted by the model were convolved using the 
Spectral Response Function (SRF) of the target sensor. 

 
ML Inversion 
 
Machine learning methods saw a surge of interest in the past decade for their ease of implementation 
and their computational speed after the training phase. Random forest regression (RFR) is an ensemble 
algorithm based on multiple decision trees with frequent use for functional traits retrieval in remote 
sensing (Izquierdo-Verdiguier and Zurita-Milla, 2018). The mixture of bootstrapping and random 
feature selection makes it less sensitive to outliers and noise (Waske et al., 2009). RFRs are out-of-bag 
predictors, meaning that they can only predict values within the range they were trained (Breiman, 
2001). Initially conjoint pre-processing, fitting, prediction and evaluation of target variables with RFR. 
Following (Danner et al., 2021), for RFR, neither the variation of max. features, nor the number of 
estimators, nor the minimum number of samples per leaf had a notable impact on the model’s 
performance. Best results for estimation of LAI were obtained when 75% of the features were used for 
training (max. feature = 0.75). A higher number of estimators in the random forest turned out to be 
slightly beneficial for the training success. The minimum number of samples per leaf for each decision 
tree turned out to be quite insensitive. The best results with a 2000 combinations LUT (rRMSETest = 
0.25, R2Test = 0.82) were obtained (Danner et al., 2021) with the following parameterization: 
 

● Max. features: 0.75 
● Min. samples per leaf: 1 
● NEstimators: 100+ 

 
Max. features did not have any impact on model size, but the minimum number of samples per leaf 
scaled with inverse potency and could therefore be increased to reduce model size. 

 

Experimental Results: 

Before comparing the inversion results with field data, the performance of the RF models was evaluated 
by comparing the results of the RF LAI estimated through the inversion of the LUT in the 
training/testing phase with the original LUT LAI values. Specifically, the simulation was performed 
starting from the Sentinel-2 image over the Narok area of 12/6/2023 (the only partially cloud-free 
image). In order to make a comparison, the same observation conditions as in the S2 image were 
included as input, i.e. Solar Zenith Angle (SZA)=34, Viewing Zenith Angle (VZA)=8 and Relative 
Azimuth Angle (RAA)=60. 

The LUT inversion parameters defined for the cropland class were as follows (Table 26): 

 

Table 26. PROSAIL ranges parameters for LUT inversion. 

Parameters Units Used ranges for Cropland 
class 
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Leaf structure - 1 – 2.5 

Equivalent water thickness cm 0.0001 – 0.07 

Dry matter content 𝜇g/m2 0.001 – 0.01 

Chlorophyll a+ b content 𝜇g/m2 1 – 80 

Total carotenoid content 𝜇g/m2 1 – 15 

Total anthocyanin content 𝜇g/m2 0 – 5 

Brown pigments - 0 

Leaf area index m2/m2 0.5 – 8 

Hot spot parameter - 0.01 – 0.5 

Average leaf inclination angle degrees 30 – 70 

Soil reflectance - 0 – 1 

Soil brightness factor - 0 – 1 

The Random Forest LAI inversion performance in the training/test phase is shown in (Figure 53), which 
shows a very high coefficient of correlation (R2=0.91). 
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Figure 53. Comparison between Random Forest and PROSAIL simulations for LAI estimation. 

 

Subsequently, on the same Sentinel-2 image, comparisons were made between the LAI measured 
instrumentally in the field campaigns with the LAI obtained from the SNAP Biophysical Processor tool 
and with that obtained as output from PROSAIL. Specifically, the differences between the LAI values 
measured in the field (for both maize and wheat) and the LAI values, at the respective GPS coordinates, 
of the images obtained through the different software mentioned were calculated directly. The averages 
and standard deviations of these differences are shown, respectively. The analysis is still in progress, 
but from an initial assessment the results provided by PROSAIL seem to be more in line with ground 
truth data from the field, than with those obtained by SNAP (Table 11). 

Table 27. Comparison between LAI measured values and LAI computed by SNAP (up) and PROSAIL. 

Maize: In Situ Vs. SNAP 

15/06/2023 16/06/2023 17/06/2023 

Mean 0.4064 Mean 1.1372 Mean 0.4115 

STD 0.4991 STD 1.166 STD 0.867 

Wheat: In Situ Vs. SNAP 
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Mean 0.1439 Mean -2.0411 Mean -0.2578 

STD 0.5007 STD 0.9895 STD 0.8168 

Maize: In Situ Vs. PROSAIL 

Mean 0.0971 Mean 0.0226 Mean -0.4174 

STD 0.6774 STD 1.1353 STD 1.2567 

Wheat: In Situ Vs. PROSAIL 

Mean -0.618 Mean 1.2426 Mean -0.8644 

STD 0.9651 STD 0.9907 STD 0.9871 

 

 

Issues & Next Steps:  

As already mentioned before, the main difficulty arises from the reduced number of cloud free images 
available in the area of interest. The results of Table 27 show that the estimate of the LAI done by using 
the tool available in SNAP is not particularly accurate. To improve the LAI prediction model, we can use 
the approach described above, that is computing a LUT based on the spectral channels of Sentinel-2 
and/or a selected number of PRISMA spectral channels (the selection could be based on a sensitivity 
analysis or a Principal Component Analysis approach). Then, using the ground measurements of LAI, a 
more or less complicated model, starting from simple regression to Neural Network approach, could be 
developed. For instance, one of the advanced methods used to retrieve quantitative terrestrial bio-
geophysical variables is the Hybrid approach (Figure 54) (Verrelst et al., 2015). This method involves 
using an inverse mapping technique with a non-parametric model (e.g. Machine learning Regression 
Algorithms) that is trained using simulated data generated by Radiative Transfer Models (RTMs).  

If a large number of images, both PRISMA and Sentinel-2, is collected in the coming season, the above-
mentioned approach could be attempted. 
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Figure 54. Example of the hybrid approach, applied at an agricultural area in Italy 
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