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1. Introduction 

1.1. Purpose – Scope 

The objective of the AFRI4Cast project is to develop a modeling platform making full exploitation of satellite 

remote sensing of PRISMA and ECOSTRESS sensors for climate change impact analyses on agriculture, and 

making it available to African stakeholders for shaping future agricultural policies in the African Continent.  This 

modeling solution will be a discrete simulation engine where different EO processing techniques and tested crop 

and disease models are integrated in order to carry out high temporal and spatial analysis simulations for the goal 

of food safety and security. 

 

The models will employ most of the available data and products of both the ECOSTRESS and the PRISMA 

missions. However, in the context of remote sensing for agriculture, those 2 sensors can not contribute much due 

to their limited crop monitoring capabilities, at crop parcel scale, which is attributed to their low spatial and 

temporal resolution. As far as EO data is concerned, AFRI4CAst will deliver a remote sensing infrastructure for 

acquisition, reprocessing , vegetation feature indices calculation and biophysical parameters estimation. 

 

The infrastructure will incorporate an algorithmic chain appropriate for EO data fusion for resolution enhancement 

and elaboration to increase the level of detail at which resulting indices and products can be extracted. Super-

resolution neural network architectures will be trained using archived acquisitions to improve the spatial resolution 

of PRISMA hyperspectral data and temporal resolution of ECOSTRESS products. 

The overall aims of the “D3: State-of-the-art review report on the EO analysis method/s & algorithm/s ” are : 

 

 to list and describe the major EO products that will be used throughout the project, as input data sources 

to the fusion algorithms in order to provide the enhanced thermal and hypespectral EO data services 

 to provide documentation for the EO data requirements, for the accomplishment of the Data Fusion and 

the Modeling tasks 

 to present a scientific review report of the state of the art EO analysis methods and algorithms that exist 

for the tasks of data fusion on thermal & hyperspectral data, Radiative Transfer Model Inversion, Crop 

Monitoring, and conclude on which approach will be tested and applied throughout the project.  

2. Terms, Definitions and Abbreviations 

 

Table of Acronyms 

ADS Annotation DataSet 

ALEXI Atmosphere-Land Exchange Inverse 

ASI Italian Space Agency 

BOA Bottom-of-Atmosphere 

CBD Context-Based Decision 

CCC Canopy Chlorophyll Content 

CNMF Coupled Nonnegative Matrix Factorization  

CNN Convolutional Neural Networks 

CONUS Continental United States 
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CP Control Points  

CS Component Substitution 

CT Crop Type 

CWC Canopy Water Content 

DIAS Data and Information Access Service 

DisALEXI Disaggregated ALEXI algorithm 

DOY Day Of Year 

DOYM Day of NDVImax 

ECOSTRESS ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 

EO Earth Observation 

EOS End of Season 

ET Evapotranspiration 

ESA European Space Agency 

ESI Evaporative Stress Index 

EUMETSAT European organization for the Exploitation of Meteorological Satellites 

fAPAR Fraction of Absorbed Photosynthetically Active Radiation 

fCover Green cover fraction 

FVC Fraction Vegetation Cover 

GLP Gaussian Laplacian Pyramid 

GPU Graphics Processing Unit 

GS Gram Schmidt 

GSA Global Sensitivity Analysis 

GSD Ground Sampling Distance 

GSW Generalised Split-Window 

HEG HDF-EOS To GeoTIFF Conversion Tool 

HS HyperSpectral 

IHS Intensity Hue Saturation 

IR Infrared 

ISS International Space Station 

JPL Jet Propulsion Laboratory 

LAI Leaf Area Index 

LE Latent Heat Flux 

LIDF Leaf Inclination Distribution Function 

LSA Land Surface Analysis 

LST Land Surface Temperature 

LUT Look-up Table 

ML Machine Learning 

MLRA Machine Learning Regression Algorithm 

MODIS Moderate Resolution Imaging Spectroradiometer 

MRA Multiresolution Analysis 

MS MultiSpectral 

MSG Meteosat Second Generation 

MSI MultiSpectral Instrument 
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MSR Modified Simple Ratio 

MSU Mass Storage Unit 

MWR Microwave Radiometer 

NASA National Aeronautics and Space Administration 

NDVI Normalized Difference Vegetation Index 

NIR Near-Infrared Radiation 

NNET Neural Network 

OLCI Ocean and Land Colour Instrument 

OLI Operational Land Imager 

OZA Observer Zenith Angle 

PAN Panchromatic 

PBC Phenology-based Classification 

PCA Principal Component Analysis 

PHyTIR Prototype HyspIRI Thermal Infrared Radiometer 

PMW Passive Microwave 

PRI Photochemical Reflectance Index 

PRISMA PRecursore IperSpettrale della Missione Applicativa 

PSF Point Spread Function 

PSRI Plant Senescence Reflectance Index 

PWV Precipitable Water Vapor 

REP Red Edge Position 

ResNet Residual Network 

RFR Random Forest Regression 

RMSE Root Mean Square Error 

RTM Radiative Transfer Model 

SAF Satellite Application Facility 

SCL Scene Classification Layer 

SEB Surface Energy Balance 

SEVIRI Spinning Enhanced Visible and InfraRed Imager 

SFIM Smoothing Filtered-based Intensity Modulation 

SIPI Structural Independent Pigment Index 

SL2P Sentinel-2 Prototype Processor 

SLSTR Sea and Land Surface Temperature Instrument 

SMM Stochastic Mixing Model  

SNAP Sentinel Application Platform 

SNR Signal-to-Noise Ratio 

SOS Start of Season 

SRF Spectral Response Function 

SRAL SAR Radar Altimeter 

STC SpatioTemporal Consistency 
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STFN Spatiotemporal Fusion Network 

SURF Speeded-up Robust Feature  

SWIR Short Wave Infrared Radiation 

SZA Sun Zenith Angles 

TES Temperature and Emissivity Separation 

TIR Thermal Infrared Radiation 

TIRS Thermal Infrared Sensor 

TOC Top of Canopy 

TsHARP Thermal Sharpening Algorithm  

USDA United States Department of Agriculture 

VNIR Visible Near Infrared Radiation 
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3. Input data products for AFRI4Cast EO Services 

 

3.1. ECOSTRESS 

3.1.1. Mission  

        

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission is 

devoted to the collection of measurements regarding the temperature of plants in order to improve the 

comprehension about their water needs as well as their response to changes in water availability. ECOSTRESS 

was launched to the International Space Station (ISS) on the 29th of June 2018 and was installed on the 3rd of July 

2018 (Hulley et al., 2022). Continuous measurements are collected by ECOSTRESS between 52°N and 52°S at 

various times of the day with a daily overpass return frequency for any same spot on Earth, dependent on the 

latitude. ECOSTRESS gathers observations over the continental U.S. (CONUS) as well as over key biomes, 

agricultural zones and selected FLUXNET validation sites worldwide within its viewing swath width of 384km. 

ECOSTRESS carries a thermal radiometer called Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) 

created by National Aeronautics and Space Administration (NASA)'s Jet Propulsion Laboratory (JPL). PHyTIR 

observes over five bands from 8 to 12.5 μm wavelengths within the Thermal Infrared Radiation (TIR) spectrum 

and a supplementary sixth band at 1.6 μm in the Short Wave Infrared Radiation (SWIR) spectrum (Table 1.) 

exploited for cloud detection (Fisher et al., 2020). According to Hulley et al. (2022), ECOSTRESS provides at 

present the highest spatial resolution spaceborne TIR data as the spatial resolution at nadir is 69 m x 38 m, which 

is resampled to 70 m x 70 m by the ECOSTRESS data production software aiming to reduce noise and facilitate 

the data use (Fisher, 2018a) 

Table 1. ECOSTRESS Spectral Bands (Reference:https://lpdaac.usgs.gov/data/get-started-data/collection-

overview/missions/ecostress-overview/) 

Band 

Emitted 

Range (band 

center, μm) 
Band Notes 

1 1.66  

2 8.285 
Unavailable for acquisitions after 

May 15, 2019 

3 8.785  

4 9.06 
Unavailable for acquisitions after 

May 15, 2019 

5 10.522  

6 12.001  
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3.1.2. Data products  

 

The ECOSTRESS mission produces distributable swath, gridded and tiled science data products. The products 

depict four levels of data processing, with each level integrating additional information, plus  Level-0 products 

that correspond to the raw collected telemetry. According to Hook Simon and the ECOSTRESS Team (2017) 

each processing level refers to: 

 Level-1: Calibrated geolocated radiances 

 Level-2: Land Surface Temperature and emissivity data acquired from the Level-1 radiance data as 

well as cloud mask products.  

 Level-3: Evapotranspiration products retrieved from Level-2 data.  

 Level-4: Water Use Efficiency and Evaporative Stress Index products derived from Level-3 data.  

 

Within the context of AFRI4Cast, the below described ECOSTRESS science data products shall be used (Table 

2.):  

▪ ECO1BGEO: The ECO1BGEO Version 1 data product offers geolocation information for the radiance 

values. This data product should be used for the georeference of ECO2CLD, ECO2LSTE, ECO3ANCQA, 

ECO3ETPTJPL, ECO4ESIPTJPL, and ECO4WUE data products. ECO1BGEO is provided as swath data 

in HDF5 file format in a spatial resolution of 70m and a daily temporal resolution. The ECO1BGEO data 

product consists of data layers for latitude and longitude values, surface height, solar and view geometry 

information and the fraction of pixel on land versus water (Smyth and Leprince, 2018) 

▪ ECO2CLD.001: The ECO2CLD Version 1 data product provides a cloud mask layer (Hulley and Hook, 

2018a) in order to determine the cloud coverage for the ECO2LSTE, ECO3ETPTJPL, ECO4ESIPTJPL, 

and ECO4WUE data products. ECO2CLD is provided in HDF5 file format in a spatial resolution of 70 

m and the ECO1BGEO product is required for its georeferenced. 

▪ ECO2LSTE.001: The ECO2LSTE Version 1 data product provides atmospherically corrected land 

surface temperature and emissivity values obtained from five thermal infrared (TIR) bands. The physics-

based Temperature and Emissivity Separation (TES) algorithm was used to create the ECO2LSTE data 

product (Hulley and Hook, 2018b). The ECO2LSTE data product is distributed as swath data in HDF5 

file format in a spatial resolution of 70m and a daily temporal resolution, while the ECO1BGEO product 

is additionally required for its georeference. This data product is comprised of layers of LST, LST error, 

emissivity for bands 1 through 5, emissivity error for bands 1 through 5, quality control for LST and 

emissivity, wideband emissivity and Precipitable Water Vapor (PWV). Due to an anomaly in the primary 

mass storage unit (MSU) of ECOSTRESS, data acquisitions after the 15th of May 2019 contain data values 

only for the TIR bands 2, 4 and 5, whereas TIR bands 1 and 3 contain fill values to facilitate direct data 

streaming from the ISS.   

▪ ECO3ETALEXI.001: The ECO3ETALEXI Version 1 data product, provided by NASA’s JPL, offers 

daily estimates of evapotranspiration (ET) using the Level-2 ECOSTRESS LST and emissivity product 

(ECO2LSTE) together with supplementary meteorological data and other spaceborne vegetation cover 

information. ECO3ETALEXI data product is obtained using the Atmosphere Land Exchange Inverse 

(ALEXI) Disaggregation algorithm (DisALEXI) (Cawse-Nicholson and Anderson, 2021a) a physics-

based surface energy balance (SEB) algorithm (Anderson et al., 2021). This data product is distributed in 
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HDF5 file format in a spatial resolution of 70m and a daily temporal resolution. ECO3ETALEXI contains 

daily ET and ET uncertainty layers as well as the correspondent quality flags. 

▪ ECO3ETPTJPL.001: The ECO3ETPTJPL Version 1 data product provides daily estimates of 

evapotranspiration (ET) according to the Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) algorithm 

(Fisher, 2018a). This data product is distributed in HDF5 file format in a spatial resolution of 70m and a 

daily temporal resolution. ECO3ETPTJPL contains instantaneous and daily ET layers as well as layers 

regarding the canopy transpiration, soil evaporation, interception evaporation and ET uncertainty. 

▪ ECO4ESIALEXI.001: The ECO4ESIALEXI Version 1 data product, provided by NASA’s JPL, offers 

estimates of the Evaporative Stress Index (ESI) which is calculated based on the relative daily 

evapotranspiration (ET) fraction derived from ECOSTRESS Level-3 product daily ET estimates. 

ECO3ETALEXI data product is obtained using the Atmosphere Land Exchange Inverse (ALEXI) 

Disaggregation algorithm (DisALEXI) (Cawse-Nicholson and Anderson, 2021b). This data product is 

distributed in HDF5 file format in a spatial resolution of 70 m and it contains layers of daily ESI, ESI 

uncertainty and the correspondent quality flags.  

▪ ECO4ESIPTJPL.001: The ECO4ESIPTJPL Version 1 data product provides estimates of the 

Evaporative Stress Index (ESI) obtained based on the Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) 

algorithm (Fisher, 2018b). ECO4ESIPTJPL contains layers of ESI and potential ET while it is distributed 

in HDF5 file format in a spatial resolution of 70 m.  

▪ ECO4WUE.001: The ECO4WUE Version 1 data product provides Water Use Efficiency (WUE) data 

calculated based on the Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) algorithm (Fisher, 2018c). 

ECO4WUE data product consists of a single layer of water use efficiency and it is distributed in HDF5 

file format in a spatial resolution of 70 m.  

 

Table 2. ECOSTRESS science data products' features. 

Product Description 
Spatial 

Resolutio

n (m) 

Temporal 

Resolution 

Temporal 

Extent 
Reference 

ECO1BGEO Geolocation 70 Daily 
09-07-2018 

to Present 

(Smyth and 

Leprince, 

2018) 

ECO2CLD.001 Cloud Mask 70 Daily 
09-07-2018 

to Present 

(Hulley and 

Hook, 2018a) 

ECO2LSTE.001 

Land Surface 

Temperature 

(LST) and 

Emissivity 

70 Daily 
09-07-2018 

to Present 

(Hulley and 

Hook, 2018b) 
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ECO3ETALEXI.001 
Evapotranspiration 

(ET) 
70 Daily 

15-07-2018 

to Present 

(Cawse-

Nicholson 

and 

Anderson, 

2021a) 

ECO3ETPTJPL.001 
Evapotranspiration 

(ET) 
70 Daily 

15-07-2018 

to Present 

(Fisher, 

2018a) 

ECO4ESIALEXI.001 

Evaporative Stress 

Index (ESI), 

Evapotranspiration 

(ET) 

70 Daily 
15-07-2018 

to Present 

(Cawse-

Nicholson 

and 

Anderson, 

2021b) 

ECO4ESIPTJPL.001 

Evaporative Stress 

Index (ESI), 

Evapotranspiration 

(ET) 

70 Daily 
15-07-2018 

to Present 

(Fisher, 

2018a) 

ECO4WUE.001 
Water Use 

Efficiency (WUE) 
70 Daily 

15-07-2018 

to Present 

(Fisher, 

2018b) 

 

Referring to the naming conventions of ECOSTRESS filenames (https://lpdaac.usgs.gov/data/get-started-

data/collection-overview/missions/ecostress-overview/), in an example of a grid product the filename 

ECOv002_L2G_LSTE_24423_017_20221026T195702_0710_01.h5 indicates: 

 ECO – Sensor 

 v002 – Product Version 

 L2G – Processing Level and Type (Blank for Swath or G = Grid) 

 LSTE – Geophysical Parameter 

 24423 – Orbit Number 

 017 – Scene ID 

 20221026 – Date of Acquisition (YYYYMMDD) 

 T195702 – Time of Acquisition (HHMMSS) (in UTC) 

 0710 – Build ID of software that generated product, Major+Minor (2+2 digits) 

 01 – Product Iteration Number 

 .h5 – Data Format for Grid or Swath 

 

Regarding the data access, the following services and API provide users with the ability to search, query, discover, 

visualize, transform and download ECOSTRESS data products:   

 USGS EarthExplorer: https://earthexplorer.usgs.gov/ 

https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/ecostress-overview/
https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/ecostress-overview/
https://earthexplorer.usgs.gov/
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 NASA Earthdata:https://search.earthdata.nasa.gov/search?q=C1534729776-LPDAAC_ECS 

 LP DAAC Data Pool: https://e4ftl01.cr.usgs.gov/ECOSTRESS/ 

 OPeNDAP API 

 AppEEARS tool API: https://appeears.earthdatacloud.nasa.gov/task/area. 

 

 

3.2. PRISMA 

3.2.1. Mission  

 

PRISMA (PRecursore IperSpettrale della Missione Applicativa) is a hyperspectral satellite system launched by 

the Italian Space Agency (ASI) on 22 March 2019, into a low-Earth, sun-synchronous orbit at 615 km altitude, 

with a repeat cycle of 29 days and a revisit capability for a specific target of less than one week with off-nadir 

viewing. It is classified as a small satellite with a 5-year estimated operational life. The instruments combine two 

hyperspectral sensors and one panchromatic camera. Two hyperspectral sensors can capture images in a 

continuum of 239 spectral bands ranging from 400 to 2500 nm, 66 in the VIS-NIR, and 173 in the SWIR spectrum, 

with a spectral resolution smaller than 12 nm and a spatial resolution of 30 m (Guarini et al., 2018). The 

panchromatic camera has a GSD of 5 m and works in the spectral range of 400–700 nm. The recorded images 

were in an area of interest spanning from 180° W to 180° E longitude and 70° S to 70° N latitude (R. Loizzo et 

al., 2018). 

3.2.2. Data products  

 

The following standard processing level products are available for PRISMA: 

    • L1 product: The L1 Earth Observation Product basically contains four kinds of data organized in four layers: 

two Radiometrically Calibrated HYPER and PAN Surface_Obs cubes and two Co-registered HYPER and PAN 

Surface_Obs cubes. It also contains the Cloud Coverage, Sun Glint and Generic Land Cover masks. Coregistered 

cubes correspond to the Radiometric Cubes where also spatial co-registration of SWIR and PAN with respect to 

VNIR channel is performed. It has been dedicated to send both not-co-registered and co-registered data, since co-

registration is founded on interpolation so co-registered data represent manipulated data. Not co-registered data 

instead is directly associable to L0a Raw Data, simply the Radiance transformation is applied. 

    • L2 product (L2B, L2C and L2D): The Level 2 processing is in charge of processing Top-of-Atmosphere 

spectral radiance measurements into geophysical parameters. These parameters depend on the observed pixels 

and provide information on the at-surface radiance/reflectance (L2B/L2C) and the properties of the atmosphere 

above the surface (Guarini et al., 2018): 

 Aerosol Optical Thickness and Angstrom Exponent; 

 Water Vapour; 

 Thin Cloud Optical Thickness. 

L2D product results from the orthorectification of the L2C level image. 

 

Occasionally, PRISMA images geolocation error could reach values of 3 – 5 pixels (90m – 150m). In order to 

improve the image geolocation, a pre-processing procedure has been introduced with the use of a Python package 

https://search.earthdata.nasa.gov/search?q=C1534729776-LPDAAC_ECS
https://e4ftl01.cr.usgs.gov/ECOSTRESS/
https://appeears.earthdatacloud.nasa.gov/task/area
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based on AROSICS algorithm which co-registers PRISMA images on Sentinel-2 imagery (Scheffler et al., 2017). 

A procedure has been also developed for effectively improving the PRISMA spatial resolution to 10 or 20m spatial 

resolution by using Sentinel-2 imagery as proposed by Acito et al. (2022). The panchromatic band is not used for 

sharpening because the high resolution band do not cover the whole spectral region of interest. 

Regarding the access on PRISMA data, PRISMA images can be downloaded from the ASI portal: 

https://prisma.asi.it/. A registration is requested and both archived data and new acquisition can be requested 

through the account. Images are delivered in HDF-EOS5 format (.he5). Different programs are available to convert 

hdf data in geotiff: 

 a tool in R named prismaread (https://irea-cnr-mi.github.io/prismaread/); 

 a tool of the commercial software called ENVI (ENvironment for Visualizing Images); 

 a plug-in for QGIS named EnMAP-box  

 a tool in Python, (prisma2geotiff.py). 

 

All tools divide the image in three data cubes: 

 VNIR Cube containing 66 spectral bands; 

 SWIR Cube containing 173 spectral bands; 

 PAN Cube containing 1 panchromatic band at 5 m spatial resolution. 

 

 

Table 3. shows a list of indices (from EnMAP toolbox) capable to characterize vegetation bio-physical conditions. 

A very comprehensive list of spectral indices developed for vegetation characterization is given at 

https://www.indexdatabase.de/db/i.php. 

 

 

Table 3. Selection of vegetation indices which can be potentially computed by using an hyperspectral sensor. 

Characteristic Spectral indices 

Structure NDVI, MCARI, MSAVI, MTVI, OSAVI, SPVI, RDVI 

Chlorophyll 
CSI, Greenness Index, GM, NPQI, PRI, Red Edge, SR705, TCARI, 

TVI, Vogelmann Index, ZTM, SR, PSSR, LCI, MLO, MSR 
Carotenoids and Anthocyanin ARI, CRI, PSSRc, SIPI 

Leaf Water DSWI, LWVI, MSI, NDWI, PWI, SRWI 
Dry Matter SWIRV1, CAI, NDLI, NDNI, BGI, BRI, RGI, SRPI, NPCI, PSRI 

Fluorescence CUR, LIC 
 

The formulas to compute the indices listed in Table 3. are given in Appendix 1. The list of PRISMA spectral 

channels is given in Appendix 2. 

 

 

3.3. MODIS 

3.3.1. Mission  

 

Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument aboard two NASA satellites, Terra 

and Aqua, which were launched in 1999 and 2022, respectively. The design of the instrument combines features 

https://prisma.asi.it/
https://irea-cnr-mi.github.io/prismaread/
https://www.indexdatabase.de/db/i.php
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of the radio meter Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic Mapper and 

works in medium and long infrared (IR) spectral bands (Justice et al., 1998). MODIS  is capable of receiving data 

in 20 reflective solar bands (RSB) and in 16 bands of thermal (thermal emissive bands-TEB) radiation of the 

infrared zone of electromagnetic spectrum with their wavelengths ranging from 0.41 to 2.2 μm and from 3.75 to 

14.24 μm, respectively, providing observations in spatial analysis of 250 m for bands 1-2, 500 m for bands 3-7 

and of 1 km for bands 8-36 (Xiong et al., 2009) with a revisit period of 1-2 days. 

3.3.2. Data products  

 

In terms of AFRI4Cast, MODIS Land Surface Temperature and Emissivity as well as MODIS Evapotranspiration 

data products will be used (Table 4.). 

 MOD11A1.061: The MOD11A1 Version 6.1 Level-3 product acquired from MODIS/Terra provides 

daily gridded Land Surface Temperature (LST) and Emissivity measurements at a global scale in a spatial 

resolution of 1 km. The MOD11A1 product data set includes layers of LST day and night, emissivity, 

quality control for daytime and nighttime LST and emissivity, time of the daytime and nighttime LST 

observation and the view zenith angle of daytime and nighttime LST (Wan, 2006). 

 MOD16A2.061: The MOD16A2 Version 6.1 Level-4 product acquired from MODIS/Terra provides 

gridded Net Evapotranspiration/Latent Heat Flux measurements at a daily pace in an 8-day composite in 

a special resolution of 500 m. MOD16A2’s production algorithm is established in the sense of Penman-

Monteith equation in which daily meteorological data as well as other MODIS data products are used as 

input (Running, S.W. et al., 2019). MOD16A2 includes layers referring to the composited ET, potential 

ET, Latent Heat Flux (LE), potential LE as well as a quality control layer.    

MOD11A1 and MOD16A2 are distributed in HDF-EOS file format, while its naming convention follows the 

structure: e.g., MOD11A1.A2000185.h25v03.006.2006299173851.hdf where:  

 MODD11A1 – MODIS Product short name  

 A2000185 – Julian Date of Acquisition (A-YYYYDDD) 

 h25v03 – Tile identifier (Tile location- horizontalXXverticalYY) 

 006 – Collection Version  

 2006299173851 - Julian Date of Production (YYYYDDDHHMMSS) 

 .hdf – Data format (HDF-EOS)  

 

Table 4. MODIS data products' features. 

Product Description 

Spatial 

Resolutio

n (m) 

Temporal 

Resolution 

Temporal 

Extent 
Reference 

MOD11A1 

Land Surface 

Temperature 

(LST) and 

Emissivity 

1000 Daily 
24-02-2000 

to Present 
(Wan,2006) 

MOD16A2 
Evapotranspiration

/Latent Heat Flux 
500 

8-day 

composite 

01-01-2001 

to Present 

(Running, 

S.W. et al., 

2019) 
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Regarding the data access, the following services and API provide users with the ability to freely search, query, 

discover, visualize and download the above mentioned data products:   

 USGS EarthExplorer: https://earthexplorer.usgs.gov/ 

 Earthdata: https://lpdaac.usgs.gov/tools/earthdata-search/ 

 LP DAAC Data Pool: https://e4ftl01.cr.usgs.gov/MOLT/ 

 OPeNDAP API 

 MODIStsp R package  

 

With reference to the processing of MODIS data products raster time series, MODIStsp R package facilitates the 

preprocessing operations, i.e., downloading, mosaicking, stacking, resizing and reprojecting (Busetto and 

Ranghetti, 2018). MODIStsp required inputs are comprised of MODIS data products HDF files, which will 

afterwards be preprocessed according to user’s choices. The output layers are produced and saved as single-band 

rasters matching the acquisition date available for the desired MODIS data product within the specified time 

period. Likewise, the HDF-EOS To GeoTIFF Conversion Tool (HEG) is a tool that targets on assisting the 

reformatting, reprojection, mosaicking and subsetting procedures on HDF-EOS data products. HEG supports 

MODIS (Terra and Aqua) data products along with several remotely sensed datasets. HEG TIFF output files are 

ingestible into commonly used GIS applications (https://hdfeos.org/software/heg.php).   

 

 

3.4. Copernicus Sentinel-2 & Sentinel-3 

3.4.1. Sentinel-2  

 

The Sentinel-2 mission consists of a constellation of two polar-orbiting satellites that are phased at 180° degrees 

from one another and placed in the same orbit. Its wide sweep width and high revisit time (10 days with one 

satellite at the equator and 5 days with two satellites under cloud-free circumstances, resulting in 2-3 days at mid-

latitudes) support monitoring of vegetation changes throughout the growing season. The S2A and S2B Sentinel-

2 satellites were launched in June 2015 and March 2017, respectively. The range of latitudes that are covered is 

from 56° S to 84° N. Sentinel-2 is equipped with a MultiSpectral Instrument (MSI), which passively collects the 

reflected sunlight from the Earth while the satellite moves along its orbital path. Sentinel-2 provides observations 

at 12 different spectral bands in three possible spatial resolutions, varying from 10 to 60m (Table 5.) 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath).  

 

Table 5. Wavelengths and Bandwidths of the three Spatial Resolutions of the Sentinel-2 MSI instrument. 

Spatial 

Resolution 

(m) 

Band 

Number 

S2A S2B 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

10 

2 492.4 66 492.1 66 

3 559.8 36 559 36 

4 664.6 31 664.9 31 

8 832.8 106 832.9 106 

20 5 704.1 15 703.8 16 

https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/tools/earthdata-search/
https://e4ftl01.cr.usgs.gov/MOLT/
https://hdfeos.org/software/heg.php
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath
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6 740.5 15 739.1 15 

7 782.8 20 779.7 20 

8a 864.7 21 864 22 

11 1613.7 91 1610.4 94 

12 2202.4 175 2185.7 185 

60 

1 442.7 21 442.2 21 

9 945.1 20 943.2 21 

10 1373.5 31 1376.9 30 

 

 

Products from Sentinel-2 consist of elementary granules with a single orbit and a defined size. The smallest, 

indivisible portion of a product is called a granule (containing all possible spectral bands).  Specifically, the 

granules, also known as tiles, for Level-1C and Level-2A products are 100x100 km2 ortho-images in 

UTM/WGS84 projection and range in size from 700 to 1000 MB. The 60 zones that make up the Earth's surface 

are determined by the UTM (Universal Transverse Mercator) system, while each UTM zone has a vertical 

longitude width of 6° and a horizontal latitude width of 8°. Tiles can be entirely or partially covered by image data 

as partially covered tiles match those along the edge or top/bottom of the Datastrip. Within the context of 

AFRI4Cast, Sentinel-2 MSI Level 2A products will be used, which correspond to the Bottom-of-Atmosphere 

(BOA) reflectance in cartographic geometry for the selected areas.  

 

Sentinel-2 Level 2A products are distributed in SAFE file format following the below mentioned naming 

convention:  

 

MMM_MSIXXX_YYYYMMDDHHMMSS_Nxxyy_ROOO_Txxxxx_<Product Discriminator>.SAFE 

 

where,  

MMM: is the mission ID (S2A/S2B) 

MSIXXX: Product Level. MSIL1C denotes the Level-1C product level/ MSIL2A denotes the Level-2A product 

level 

YYYYMMDDHHMMSS: the datatake sensing start time 

Nxxyy: the PDGS Processing Baseline number (e.g. N0204) 

ROOO: Relative Orbit number (R001 - R143) 

Txxxxx: Tile Number field 

SAFE: Product Format (Standard Archive Format for Europe) 

 

Data access to Sentinel-2 Level 2A products is free and it can be granted via Copernicus Open Access Hub. 

Sentinel-2 data products are also available via cloud in the Copernicus Data and Information Access Service 

(DIAS) cloud environments, e.g. ONDA, CREODIAS. By July 2023, Sentinel-2 data products will be also 

accessible through the Copernicus Data Space Ecosystem, in which data accessibility via API will be provided as 

well.  

3.4.2. Sentinel-3  

 

Sentinel-3, a European Earth Observation satellite mission operated by ESA and EUMETSAT, was created to 

support Copernicus ocean, land, atmospheric, emergency, security and cryospheric applications. Aiming to 



D3 - State-of-the-art review report on the EO analysis methods and algorithms 

18 
                                                                                                                                                                         

   
                                                                            

 

support ocean forecasting systems, environmental monitoring and climate monitoring, the primary goal of the 

Sentinel-3 mission is to assess sea surface topography, sea and land surface temperature and ocean and land 

surface color with high precision and reliable measurements. Sentinel-3 is equipped with four main instruments:  

 OLCI: Ocean and Land Colour Instrument 

 SLSTR: Sea and Land Surface Temperature Radiometer 

 SRAL: SAR Radar Altimeter 

 MWR: Microwave Radiometer. 

The two in-orbit Sentinel-3 satellites, S3A and S3B, enable a short revisit time of less than two days for OLCI 

and less than one day for SLSTR at the equator.  

Within AFRI4Cast, SLSTR products could be used, which are created separately for the two views of the 

instrument (nadir and oblique) at a spatial resolution that depends on the used channel i.e., 500 m resolution for 

the solar reflectance bands (S1-S6) and 1 km resolution for the thermal infrared bands (S7-S9 and F1-F2) (Table 

6.). Specifically, the SLSTR thermal bands (the three infra-red channels S7, S8 and S9 at 3.74 µm, 10.85 µm and 

12 µm) are used for the retrieval of LST products (https://sentinels.copernicus.eu/web/sentinel/user-

guides/sentinel-3-slstr/overview/geophysical-measurements/land-surface-temperature). SLSTR Level-2 Land 

Surface Temperature (LST) data products aim to provide an alternative source for LST measurements in terms of 

AFRI4Cast, except from the MODIS LST ones. 

 

Table 6. The radiometric bands of the SLSTR instrument. 

Band 

Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 
Function Comments 

Resolution 

(m) 

S1 554.27 19.26 

Cloud screening, 

vegetation 

monitoring, aerosol 

VNIR 

Solar 

Reflectance 

Bands 

500 

S2 659.47 19.25 
NDVI, vegetation 

monitoring, aerosol 

S3 868 20.6 

NDVI, cloud 

flagging, Pixel co-

registration 

S4 1374.8 20.8 
Cirrus detection over 

land 

SWIR S5 1613.4 60.68 

loud clearing, ice, 

snow, vegetation 

monitoring 

S6 2255.7 50.15 
Vegetation state and 

cloud clearing 

S7 3742 398 
SST, LST, Active 

fire 
Thermal IR 

Ambient bands 

(200 K -320 K) 

 

 

1000 
S8 10854 776 

SST, LST, Active 

fire 

S9 12022.5 905 SST, LST 

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-slstr/overview/geophysical-measurements/land-surface-temperature
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-slstr/overview/geophysical-measurements/land-surface-temperature
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F1 3742 398 Active fire Thermal IR fire 

emission bands F2 10854 776 Active fire 

 

SLSTR Level-2 LST product provides gridded land surface parameters at a spatial resolution of 1 km. It is 

comprised of measurements with LST values which are provided for each re-gridded or orphan pixel along with 

the corresponding auxiliary parameters. One Annotation DataSet (ADS) is specifically related to LST MD and 

offers for each gridded pixel and orphan pixel: 

 Normalised Difference Vegetation Index (NDVI) 

 GlobCover surface classification code (noted biome) 

 Fractional vegetation cover 

 Total column water vapour 

 

Nine files with annotations derived from the Level-1 product are also included in this product. Each ADS included 

in the Level-1B product, related to the 1 km grid and the nadir view or associated with the tie-point grid, is 

replicated as an ADS in this product, with the exception of the quality ADS: Cartesian_in, Cartesian_tx, Flags_in, 

Geodetic_in, Geodetic_tx, Geometery_tn, Indices_in, Met_tx,Time_im 

 

The SLSTR files are collected into a SAFE container. Level-1 and 2 products are enclosed in  NetCDF 4 product 

files. The file naming convention of SLSTR products  is identified by the fields described below: 

 

MMM_SL_L_TTTTTT_yyyymmddThhmmss_YYYYMMDDTHHMMSS_YYYYMMDDTHHMMSS_[instan

ce ID]_GGG_[class ID].SEN3 

 

where: 

    MMM: mission ID (S3A/S3B, S3_ = for both SENTINEL-3A and 3B) 

    S: the data source/consumer (SL = SLSTR) 

    L: the processing level (0/1/2) 

    TTTTTT: the data Type ID 

        Level 0 SLSTR data: 

            "SLT___" = ISPs. 

        Level-1 SLSTR data: 

            "RBT___" = TOA Radiances and Brightness Temperature 

            "RBT_BW" = browse product derived from "RBT___". 

        Level-2 SLSTR data: 

            "WCT___" = 2 and 3 channels SST for nadir and along track view 

            "WST___" = L2P sea surface temperature 

            "LST___" = land surface temp 

            "FRP___" = Fire Radiative Power 

            "WST_BW" = browse product derived from "WST___" 

            "LST_BW" = browse product derived from "LST___". 

    YyyymmddThhmmss: the sensing start time 

    YYYYMMDDTHHMMS: the sensing stop time 

http://due.esrin.esa.int/page_globcover.php
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    YYYYMMDDTHHMMSS: the product creation date 

    [instance ID] consists of 17 characters, either uppercase letters or digits or underscores "_" 

    GGG: identifies the centre which generated the file 

   [class ID]: dentifies the class ID for instrument data products with conventional sequence P_XX_NNN  

 

Data access to SLSTR Level-2 Land Surface Temperature (LST) data products is free and it can be granted via 

Copernicus Open Access Hub. Sentinel-2 data products are also available via cloud in the Copernicus Data and 

Information Access Service (DIAS) cloud environments, e.g. ONDA, CREODIAS. By July 2023, Sentinel-3 data 

products will be also accessible through the Copernicus Data Space Ecosystem, in which data accessibility via 

API will be provided as well.  

 

3.5. Landsat 8 & 9  

3.5.1. Missions  

 

Landsat 8 & 9 are Earth observation satellites operated by NASA that launched on the 11th of February 2013 and 

on 27th of September 2021, respectively. The Operational Land Imager (OLI) and the Thermal Infrared Sensor 

(TIRS) are the two scientific instruments that comprise the payload of Landsat 8 satellite. With a spatial resolution 

of 30 meters (visible, NIR, SWIR), 100 meters (thermal) and 15 meters (panchromatic) (Table 7.) and a temporal 

resolution of 16 days, these OLI and TIRS sensors offer seasonal coverage of the global landmass. Landsat 9 is 

equipped with the Operational Land Imager 2 (OLI-2) and the Thermal Infrared Sensor 2 (TIRS-2). In the visible, 

near-infrared, and shortwave infrared regions of the electromagnetic spectrum, OLI-2 collects data with a spatial 

resolution of 30 m for the multispectral bands and 15 m for the panchromatic band and a wide image swath of 185 

km. OLI-2 is replicating the Landsat 8’s OLI regarding the spectral, spatial, radiometric and geometric qualities. 

The Thermal Infrared Sensor 2 (TIRS-2) on Landsat 9 uses the same quantum physics-based technology as the 

TIRS on Landsat 8 in order to measure emissions of infrared energy. It measures land surface temperature in two 

thermal infrared bands. In terms of instrument class and stray light reduction, TIRS-2 is an upgraded version of 

Landsat 8's TIRS.  

OLI and OLI-2 gather information in the visible, near-infrared, short wave infrared and panchromatic spectral 

bands while TIRS and TIRS-2 collect data for two more narrow thermal infrared spectral bands, which were 

previously covered by one wide spectral band on Landsats 4-7. According to the specifications, TIRS gathers 

image data over a 185 km swath for the two thermal infrared spectral bands with a spatial resolution of 100 m. 

The two bands, which are an improvement over the single-band thermal data collected by previous Landsat 

satellites (the ETM + and TM sensors collect data for a 10.0-12.5 m thermal band), were chosen to enable 

atmospheric correction of the thermal data using a split-window algorithm 

(https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/thermal-infrared-sensor/tirs-

requirements/).  

 

Table 7. Landsat 8 & 9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) radiometric bands. 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Coastal aerosol 0.43-0.45 30 

https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/thermal-infrared-sensor/tirs-requirements/
https://landsat.gsfc.nasa.gov/satellites/landsat-8/spacecraft-instruments/thermal-infrared-sensor/tirs-requirements/
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Band 2 - Blue 0.45-0.51 30 

Band 3 - Green 0.53-0.59 30 

Band 4 - Red 0.64-0.67 30 

Band 5 - Near Infrared (NIR) 0.85-0.88 30 

Band 6 - SWIR 1 1.57-1.65 30 

Band 7 - SWIR 2 2.11-2.29 30 

Band 8 - Panchromatic 0.50-0.68 15 

Band 9 - Cirrus 1.36-1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.6-11.19 100 

Band 11 - Thermal Infrared (TIRS) 2 11.50-12.51 100 

 

3.5.2. Data products  

 

Landsat Level-2 science products are created from Collection 2 Level-1 inputs that meet the <76 degrees Solar 

Zenith Angle constraint and include the required auxiliary data inputs to generate a scientifically viable product. 

Landsat 8/9 Operational Land Imager (OLI) surface reflectance products are generated using the Land Surface 

Reflectance Code (LaSRC) algorithm (Version 1.5.0). 

Within AFRI4Cast, Landsat 8-9 TIRS Collection 2 Level-2 Science products (L2SP) may be used as an alternative 

thermal data source rather than ECOSTRESS data products. The L2SP include Surface Reflectance and Surface 

Temperature scene-based products at a spatial resolution of 30 m and a temporal resolution of 3 days. L2SPs are 

available for the following Landsat 8-9 OLI/TIRS acquisition dates: 

 Landsat 8 OLI/TIRS: April 2013 to Present 

 Landsat 9 OLI II/TIRS II: January 31, 2022 to Present 

 

Landsat 8-9 data products are distributed in GEOTIFF (.TIF) file format following the below naming 

convention:  

 

LXSS_LLLL_PPPRRR_YYYYMMDD_yyyymmdd_CC_TX.TIF 

 

where: 

L: Landsat 

X: Sensor of: C = Combined TIRS and OLI. Indicates which sensor collected data for this product 

S: Landsat satellite (08 for Landsat 8, 09 for Landsat 9) 

LLLL: Processing level (L2SP, L2SR) 

PPP: Satellite orbit location in reference to the Worldwide Reference System-2 (WRS-2) path of the product 

RRR: Satellite orbit location in reference to the WRS-2 row of the product 

YYYY: Acquisition year of the image 

MM: Acquisition month of the image 

DD: Acquisition day of the image 

yyyy: Processing year of the image 

mm: Processing month of the image 
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dd: Processing day of the image 

CC: Collection number (e.g., 02) 

TX: Collection category: "T1" for Tier 1 (highest quality), "T2" for Tier 2 

 

Regarding the data access, the U.S. Geological Survey (USGS) provides Landsat 8-9 Operational Land 

Imager/Thermal Infrared Sensor (OLI/TIRS) Collection 2 Level-2 Science Products (L2SP) through NASA’s 

EarthExplorer or LandsatLook.  

 

 

3.6. Geostationary Satellite Data  

Geostationary satellites provide imagery for weather forecasting, climate monitoring as well as the early detection 

of fast developing severe weather. Geostationary satellite data, i.e., precipitation rate, reference evapotranspiration 

and land surface temperature, that will be used within AFRI4Cast are described in this chapter and are briefly 

presented in Table 8.,  as well.  

 

 

3.6.1. Precipitation rate  

 

Precipitation rate at ground will be derived by the HSAF H03B (P-IN-SEVIRI) product. This product provides 

rapid precipitation maps derived by IR images from operational satellites which are afterwards tuned by 

precipiration measurements from passive microwave (PMW) satellite sensors in sun-synchronous orbits. 

Specifically, the product H03B (P-IN-SEVIRI Precipitation rate at ground by GEO/IR supported by LEO/MW 

over the full disk area) is based on the IR images acquired by the SEVIRI instrument on-board Meteosat Second 

Generation (MSG) satellites (EUMETSAT Satellite Application Facility on Support to Operational Hydrology 

and Water Management, 2017). The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) is MSG's main 

instrument being capable of observing the Earth in 12 spectral channels. The spatial coverage of the product 

encloses the H-SAF area (Europe and Mediterranean basin) along with Africa and Southern Atlantic Ocean, a 

coverage area that corresponds to 60°S – 67.5°N and 80°W – 80°E. H03B product is generated at the 15-min 

imaging rate of SEVIRI in the MSG SEVIRI grid at a spatial resolution that  changes across the Full Disk varying 

from 3 km near the sub-satellite point to 8 km on average over Europe.  

H03B product is provided in GRIB file format and it can be downloaded using any FTP client through access to 

ftp://ftphsaf.meteoam.it after a successful registration and login on https://hsaf.meteoam.it. The filename of H03B 

always specify the product name and its time reference, e.g., h03B_20201201_1415_fdk.grb.gz . Regarding the 

processing of H03B GRIB files, wgrib2 is a software utility enabling users to convert GRB to TXT file format, 

while custom Python scripts could be also used for the conversion to TIFF file format.  

3.6.2. Reference evapotranspiration 

 

The evapotranspiration rate from a clearly specified reference surface is known as reference evapotranspiration, 

or Eto. The idea was developed to enable the estimation of the atmospheric evaporative demand regardless of the 

type of crop, the crop development or the crop management practices. Within AFRI4Cast, reference 

evapotranspiration will be derived by the DMETREF LSA-303 product.  

ftp://ftphsaf.meteoam.it/
https://hsaf.meteoam.it/
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The Satellite Application Facility (SAF) on Land Surface Analysis (LSA) is part of the SAF Network, a set of 

specialized development and processing centers, functioning as EUMETSAT distributed Applications Ground 

Segment (EUMETSAT LSA SAF, 2016). DMETREF LSA-303 product is estimated from the Daily Downward 

Surface Shortwave Flux (DIDSSF) product generated by the LSA SAF from SEVIRI/Meteosat at an imaging-

repeat cycle of 15 minutes and a spatial resolution of 3 km at sub-satellite point.  

DMETREF LSA-303 product is available from LSA SAF website http://landsaf.ipma.pt or via an FTP request. 

This product is distributed in HDF5 file format containing the reference evapotranspiration values as well as the 

respective quality flags. The files follow the name convention:  

 HDF5_LSASAF_MSG_METREF_MSG-Disk_ YYYYMMDDHHMM 

 

where YYYY, MM, DD, HH and MM respectively, represent the year, the month, the day, the hour and the minute 

of for which the product is valid. 

 

 

3.6.3. Land Surface Temperature  

 

The radiative skin temperature over land is known as the Land Surface Temperature (LST). LST is crucial to 

understanding land surface physics as it participates in the processes of energy and water exchange with the 

atmosphere. A wide range of fields related to land surface processes, such as meteorology, hydrology, 

agrometeorology, climatology, and environmental studies, are particularly interested in accurate LST values.  

In the terms of AFRI4Cast, MSG Land Surface Temperature (MLST) values will be used along with LST from 

other previously mentioned LST data products. Specifically, the product MLST_Dir (LSA-004) comprises a 

development of the first MLST (LSA-001) product. The MLST_Dir provides LST estimations as retrieved using 

a Generalised Split-Window (GSW) algorithm and based on MSG/SEVIRI split-window channels R10.8 and IR 

12.0 (EUMETSAT LSA SAF, 2022) at an imaging-repeat cycle of 15 minutes and a spatial resolution of 3 km at 

sub-satellite point.  

MLST_Dir (LSA-004) product is available from the LSA-SAF webpage or via an FTP request. This product is 

distributed in HDF5 format containing the LST values, the directional LST values, the LST error-bar and the 

corresponding quality flags. The files follow the naming convention:  

HDF5_LSASAF_MSG_LST_<Area>_YYYYMMDDHHMM 

where <Area>, YYYY, MM, DD, HH and MM respectively, describes the geographical region, the year, the 

month, the day, the hour and the minute of data acquisition. 

 

Table 8. Geostationary satellite data products to be used within AFRI4Cast. 

Data 

Product 
Data Source Derived Parameters 

Update 

frequency 
Spatial resolution 

H03B HSAF Precipitation rate 15 minutes 

3 km near the sub-

satellite point to 8km 

on average over 

Europe 

http://landsaf.ipma.pt/
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DMETREF 

LSA-303 
LSA SAF Reference ET 15 minutes 

3 km at sub-satellite 

point 

MLST_Dir 

(LSA-004) 
LSA SAF 

Land Surface 

Temperature 
15 minutes 

3 km at sub-satellite 

point 

 

4. From input data to services - EO analysis methods & algorithms 

4.1. Introduction 

One of AFRI4Cast’s main project aspects is to deliver an end to end dataflow procedure that will acquire raw EO 

data from the remote sensing missions of ECOSTRESS and PRISMA, as well other ancillary sources 

(Meteorological data from HSAF & LA SAF missions), will process them through an EO Data Fusion component 

to derive spatial/spatiotemporal enhancements of the primary data sources, as standalone EO data product 

services, and subsequently import the raw and data fused products into a modeling component to finally derive 

Crop Monitoring data product services, which would aim to contribute to the policy pillars of Food Safety and 

Food Security. 

This data procedure, obviously has notable structure of 2 levels, Data Fusion and Modeling, and each level has 

specific constraints and requirements, which could not be met simultaneously.  Giving a simple example, the 

Modeling component will provide services on specific pilot areas with the specified crops of interest, and 

considering the handy ground truth datasets for the tuning and assessment of the model algorithms, these 

assumptions constrain the spatial extend requirements for EO data. On the other hand, for the Data Fusion 

component to deliver notable results, different kind of requirements have to be considered, focusing more on the 

spatiotemporal consistency of the EO data, the presence/concurrence  with external datasets of higher spatial 

resolution for the ground truth validation of EO product services. Thus, alternative sources of EO data have to be 

considered as well, as a “plan b” for the project to full-fill its goals in the case where the data requirements of both 

levels of processing, are not met. On Figure 1. a flowchart describing the dataflow procedure of AFRI4Cast is 

presented.  
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Figure 1. From input data to EO & Crop Monitoring services – AFRI4Cast data processing flow. 

 

4.1.1. EO Data Fusion & Crop monitoring services 

 

In the following tables, the main inputs (Raw Data Products) and outputs (EO & Crop Monitoring Product 

Services) of the AFRI4Cast project is summarized, as well as some alternative sources for “plan-b” scenarios. 

 

Table 9. Main data inputs, output services and alternative data sources within AFRI4Cast. 

Process Main Source Alternative Source Fused with Service Outputs 

Spatial Enhancement PRISMA - Sentinel-2 MSI 
PRISMA SR-

Hyperspectral Bands/ VIs 
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Spatiotemporal 

Enhancement 
ECOSTRESS LST Landsat 8/9 TIRS 

MODIS LST or 

Sentinel-3 LST 
ECOSTRESS STF-LST 

 

 

Process Main Source 
Ancillary 

Source 
Alternative Source Service Outputs 

Inversion of 

PROSAIL RTM 

PRISMA SR-

Hyperspectral Bands 
 Sentinel-2 MSI L2A 

Canopy Biophysical 

Parameters – LAI 

Crop Growth 

Modeling – 

AQUACROP 

ECOSTRESS ET – 

STF-LST 

HSAF – LSAF 

Meteo data 

MODIS LST & ET / 

Sentinel-3 LST 
Crop Yield 

Aflatoxins  

Modeling – AF B1 

& DON 

ECOSTRESS ET – 

STF-LST 

AQUACROP – 

Crop Growth 

Stage 

MODIS LST & ET or 

Sentinel-3 LST 
Aflatoxin Risk Estimation 

Rust Modeling 
PRISMA SR-

Hyperspectral Bands 
 Sentinel-2 MSI L2A 

Rust Disease Risk 

Estimation 

 

 

4.2. EO Data requirements 

This chapter targets on describing the requirements that should be determined for the Earth Observation (EO) data 

in terms of AFRI4Cast. The EO data requirements are divided into minimum and maximum requirements 

according to the EO data’s purpose of use. Minimum requirements refer to the EO data deployed in data fusion 

techniques and in the spatial or temporal enhancement of hyperspectral and thermal data as well, i.e. PRISMA 

and ECOSTRESS imagery, respectively. Maximum requirements concern the EO data harnessed for the 

assimilation of data into crop growth and disease models exploited within AFRI4Cast. Each type of EO data 

requirements is described in the sections below. 

 

 

 

4.2.1. Minimum requirements: For EO Data fusion and enhancement  

 

Thermal imagery 

 Short gap between each high spatial resolution thermal acquisition (ECOSTRESS), 4 to 8 days 

 Availability of in situ LST data from meteorological stations (Air Temperature or Radiant 

Temperature/not necessarily over the pilot areas) for the external validation of the Data Fusion product 

with ground truth of higher resolution 

 For the development of an EO Service of data fused products, a constant and consistent data flow from 

the source API.  

 

Hyperspectral imagery 
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 Concurrence of hyperspectral imagery with Sentinel-2 imagery 

 Concurrence of PRISMA hyperspectral imagery (not necessarily over the pilot areas) with high 

resolution hyperspectral L2 datasets of BOA reflectance (Historical or current airborne missions, such as 

AVIRIS or DLR HySpex) for the external validation of the Data Fusion product with ground truth of 

higher resolution 

 For the development of an EO Service of data fused products, a constant and consistent data flow from 

the source API. 

 

4.2.2. Maximum requirements: For data assimilation into crop growth & disease models  

 

Thermal imagery - Crop Growth Models / Aflatoxin Models 

 Spatial coverage and availability over the pilot areas  

 Dense LST time series (4 to 8 days ECOSTRESS availability) with day and night acquisitions in order 

to derive daily minimum and maximum temperature for the AQUACROP model 

 Consistent data flow from the source API.  

 

Hyperspectral imagery - Grop growth/ Rust Model 

 Spatial coverage and availability over the pilot areas  

 Temporal resolution and coverage for a revisit period of 8 - 15 days 

 Consistent data flow from the source API.  

 

 

4.3. Spatial enhancement of PRISMA imagery 

4.3.1. Data fusion on Hyperspectral data. A review of state of the art  

 

              4.3.1.1. Problem Statement 

Hyperspectral sensors offer the opportunity of analyzing the chemical and physical composition of the remotely 

sensed scene, thanks to their ability of measuring the spectrum of the observed pixels in a large number of 

contiguous and narrow spectral channels (Yokoya et al., 2017). In particular, space borne sensors allow the 

exploitation of HS technology for large-scale monitoring of the earth by enabling the identification and 

discrimination of materials and the derivation of surface parameters at an accuracy level unattainable by currently 

operational optical broadband (multispectral) satellites.  

Taking on account of limitations for imaging cameras, there is the certain trade-off for the spectral resolution and 

spatial resolution. Hence, HS Imagery with a large number of bands usually has a low spatial resolution to ensure 

high SNR. On the contrary, imaging sensors can obtain an image with a higher spatial resolution but with a small 

number of spectral bands, consisting of RGB image, panchromatic image, or multispectral image (MS).  

Due to that inevitable trade-off between spatial resolution, spectral resolution, and signal-to-noise ratio (SNR), 

spaceborne imaging spectrometers are usually designed to provide data with a moderate ground sampling distance 

(GSD) (e.g., 30 m), limiting the range of potential applications. If higher spatial resolution – possibly multispectral 

(MS) – data of the scene of interest is available, data fusion can be performed to generate high spatial resolution 
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hyperspectral (HS) data. This data can be thought of as the product of a synthetic sensor featuring the high spatial 

resolution of the MS sensor and the high-spectral resolution of the HS sensor.  

More and more sensors can simultaneously acquire HS and high-resolution MS Imagery on the same scenario, 

and therefore image fusion approaches can be performed to acquire a fused image with the high spectral resolution 

and high spatial resolution, which is referred to as HS-MS fusion. This data fusion allows for various new 

applications potentially conducted on a global scale, which, to data, have been possible only locally with high-

spatial-resolution airborne imaging systems. Such applications include high-spatial-resolution ecosystem 

monitoring, or the high-spatial-resolution mapping of e.g. minerals, urban surface materials, plant species, and 

many others.  

Although the number of available satellite platforms mounting both HS-MS imaging sensors is limited to date , 

the increasing number and availability of high-resolution optical satellites as well as the ever-improving revisit 

cycles allow for acquisitions of complementary HS-MS images during the same season and possibly under similar 

atmospheric and illumination conditions (Chang, 2007).   

 

            4.3.1.2. HS-MS Data Fusion Methods 

 

In recent years, several HS–MS fusion approaches have been proposed. They can be grouped into three categories: 

Pan-sharpening adaptation methods, subspace-based approaches, and Deep Learning algorithms.  

Pan Sharpening based HS-MS fusion approaches  

Regarding the enhancement of the spatial resolution of MS imagery by fusing the MS data with a corresponding 

higher-resolution panchromatic image, a large number of pan-sharpening techniques have been developed over 

the past two decades (Aiazzi et al., 2012).  

There are two representative types of pan-sharpening approaches, including Component Substitution (CS) and 

Multiresolution Analysis (MRA). The CS approaches firstly up-sample the low-resolution MSI as the same spatial 

size as that of PAN image, and then separate the spatial information and spectral information of up-sampled MSI 

in distinct components based on specific transformation (intensity hue saturation -IHS, principal-component 

analysis -PCA, and Gram Schmidt -GS). Subsequently, the spatial information is replaced by the PAN image, and 

fused MSI is obtained by bringing the replaced spatial information and spectral information back to the image 

domain via the inverse transformation. In general, CS approaches are easy and can be implemented efficiently. 

However, they may cause significant spectral distortions because of local dissimilarities between the MSI and 

PAN image (Vivone et al., 2015). 

 The MRA methods obtain the fused MSI by injecting the high-resolution structures of the PAN image, which is 

acquired by a multi-resolution decomposition, into the low-resolution MSI. The approaches in this family differ 

from using various multi-resolution decomposition method to extract high-resolution spatial structures from the 

PAN image, with representative ones, the ones comprised of Low-Pass Filtering (Smoothing Filtered based 

Intensity Modulation – SFIM) and Pyramidal Decompositions (Generalized Laplacian Pyramid –GLP).  

Based on recent advances in pan-sharpening, more sophisticated attempts have been made to adapt pan-sharpening 

techniques to the general HS-MS fusion problem.  

Selva et al. (2015) proposed a framework called hypersharpening that effectively adapts MRA-based pan-

sharpening methods to HS-MS fusion by synthesizing a high-resolution image for each HS band as a linear 
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combination of MS band images via linear regression. It was shown that the synthesized high-resolution bands 

used in hypersharpening could lead to significantly better fusion results than a similar yet simpler approach in 

which for each HS band one high-resolution MS– namely the most correlated – band is selected from the available 

MS bands rather than synthesized.  

 

 

 
Figure 2. MRA based HS fusion methods (Yokoya N et al. 2017). 

 

 

According to Yokoya et al. (2017), algorithms that were originally designed for pansharpening and adopted to the 

HS-MS fusion problem by hypersharpening are well competitive with methods that are specifically developed for 

HS-MS data fusion. In particular, the methods SFIM-HS and GLP-HS showed stable results above average in the 

majority of fusion problems, especially when the spectral range of the HS sensor is widely covered by MS bands.  

The pan-sharpening based HS – MS fusion methods often have low computation cost and can be implemented 

fast. They perform reasonably well, however, they often could produce remarkable distortions when the spatial 

resolutions of HS and MS differ greatly. Moreover, they assume perfect coregistration of the two images, a 

hypothesis that is difficult to satisfy in practice. In fact, regardless of the adopted coregistration algorithm, residual 

registration errors still remain that can deteriorate the performance of the HS–MS fusion procedure. 

 

Subspace Methods 

 

Another popular approach fuses the HS-MS images by exploiting the inherent spectral characteristics of the scene 
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via a subspace spanned by a set of basis vectors or spectral signatures of underlying materials (so-called 

endmembers).  

Representing the Bayesian Based methods the MAP algorithm (Eismann and Hardie, 2005) used a stochastic 

mixing model (SMM) to estimate the underlying spectral scene characteristics and formulates a cost function that 

optimizes the estimated HS data relative to the input HS-MS images. It should be noted that the optimization of 

MAPS-MM was processed in the principal component subspace. This idea of fusing the HS-MS images based on 

spectral information of both input images on a subspace has been the main source of inspiration for many HS-MS 

fusion methods developed later.  

The principles of spectral unmixing have been used in multisensor multiresolution image fusion already around 

the 2000s. The unmixing-based fusion idea aims at obtaining endmember information and high-resolution 

abundance matrices from the HS-MS images, respectively, under the constraints of relative sensor characteristics, 

such as a spectral response function (SRF) and a point spread function (PSF). The fused image can be 

reconstructed as the product of the two resulting matrices (Delalieux et al., 2014).  

The Matrix Factorization based fusion methods intend to estimate the spectral basis and coefficients by solving 

the corresponding optimization problem. Based on the optimization formulation for the spectral basis and 

coefficients, the MF based fusion methods mainly has three classes (Yokoya et al., 2011). 

The approaches in the first family argue that the spectral information and spatial information mainly relies on the 

low-resolution HS and high-resolution MS, respectively. Based on this assumption, they estimate the spectral 

basis only from the observed HS image, and then obtain the coefficients only from the observed MS image.  

A second category argues that low-resolution HSI also contains the spatial information and can contribute to the 

estimation of coefficients. They often firstly compute the spectral basis from observed HSI, and then calculate 

coefficients from both two images. 

The methods in the third category solve the fusion problem based on the coupled matrix decomposition, which is 

not based on the fixed dictionary, and alternatively update the spectral basis and coefficients. The representative 

work is coupled nonnegative MF (CNMF). Yokoya et al. (2011) proposed coupled nonnegative matrix 

factorization (CNMF) that estimates the end member and abundance matrices via alternating spectral unmixing 

under the constraints of an observation model which incorporates both the relative SRF and PSF.  

Although Subspace based approaches have obtained superior performance than the pan-sharpening based 

methods, they suffer from three disadvantages. First of all, these methods often need to solve the complex 

optimization problem iteratively, and the computation cost is high. Secondly, the performance of them is usually 

very sensitive to the parameter selection, and the parameters are hard to set. Finally, they are based on the 

observation model, and therefore highly rely on accurate estimation of the point spread function (PSF) and spectral 

response function (SRF). 

 

Deep Learning – Convolutional Neural Networks (CNN) 

 

Recently, Deep Learning CNNs have received more and more attention in many image processing applications 

due to its high efficiency and promising performance. The CNN is data-driven, and can effectively learn the 

various image features from the training data (Dian et al., 2021a). Deep Learning CNN based fusion approaches 
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firstly combine the features of the high-resolution MS and low-resolution HS, and then input them into the one-

branch CNN to map the high-resolution HS.   

In recent years, CNN-based algorithms have also been proposed for the HS–MS fusion problem. Dian et al. (2018) 

proposed a CNN-based fusion scheme (DHSIS) that exploits both the potential of residual learning and of the 

Bayesian approach. The method first initializes a high spatial resolution (HR) HS image from the model based 

fusion framework solving a Sylvester equation. Then, it derives an intermediate HR–HS image exploiting a CNN 

based on residual learning. This intermediate HR–HS image is returned to the model-based fusion framework to 

obtain the final super-resolved HS image.  

In a representative study, Xie et al. (2019) combined the low-rank constraint of the high-resolution HSI, 

observation models of the MS and HS, and image prior learned via deep CNN, and formulated the fusion task as 

a new optimization problem. Based on the proximal gradient method, they designed the deep CNN (MS/HS 

Fusion Net) to solve the optimization problem in an iterative way. 

The CNN based fusion methods are data-driven, often need sufficient HSI and MSI data pairs for the training 

procedure. However, the training data are often not available. Besides, the generalization ability of these methods 

is often limited by the imaging models and types of training data. To solve the above problem Dian et al. (2021) 

introduced a CNN denoiser (CNN – Fus) based HSI-MSI fusion method, which uses the CNN for denoising 

trained on the gray scaling image. Besides, this method also combines the observation model of the HS and MS 

into considerations, and it can flexibly deal with different types of data.   

There are three advantages of deep CNN based HS-MS fusion methods.   

 Firstly, they often do not need to know the PSF and SRF of the sensor, which may be hard to know in 

practice.  

 Secondly, compared with the MF and TR based methods, deep CNN based fusion methods can be 

implemented much faster, since they do not need iteration and can be easily accelerated via high-

performance GPU.   

 What is more, the non-linear function and convolution layer can make CNN a powerful ability to learn 

the image features and achieve robust fusion.   

 

Although the deep CNN based approaches have achieved promising results and high speed for HS-MS fusion, 

they still have two disadvantages that limit their use in practical remote sensing applications.  

Firstly, methods in this family require a large number of images for the training phase, which are often not 

available. Common practice often lacks the available low-resolution HS, high- resolution-MS, and high-resolution 

HSI for pre-training. A workout to produce the training data, is regarding the available HS as a reference image, 

and down-sample it to produce the low-resolution HS and high-resolution MSI, which may not conform to the 

practical condition (Dian et al., 2021a). 

Moreover, the generalization of the deep CNN is also a big challenge. Since the number of spectral bands, spatial 

resolution, and spectral coverage of the data may be different, CNN trained on one kind of data cannot be applied 

to the other kinds of data.  
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4.3.1.3. Challenges on the field of HS – MS data fusion  

 

Hyperspectral Image Fusion has made significant progress in the past ten years. However, significant challenges 

still remain, which according to Dian et al. (2021b) are regarding :  

 

HS-MS Image Coregistration  

The image co-registration intends to geometrically align two images of the same scene acquired by different 

sensors or at different times. Since HS-MS fusion requires that both images capture the image on the grid system, 

image registration is a very crucial pre-processing step for the data fusion implementation. The image registration 

methods are categorized as area-based and feature-based methods. Although image registration approaches, such 

as scale-invariant Fourier transform, can produce most of the true matches, and there remain some false matches. 

However, most of the fusion methods assume that the HS and MS are perfectly aligned, and do not account for 

the distortions caused by the non-rigid registration. The fusion methods, which consider the non-rigid registration, 

will be a very important topic in future research. Since the deep CNN based methods solve the fusion problem in 

a supervised way, they may have superiority to reduce the distortions caused by non-rigid alignment.  

HS-MS Spatial Resolution difference – spatial downsampling factor  

When the spatial resolutions of HS and MS have big differences, the essence of data fusion process is solving a 

severely ill-posed problem, since most of the spatial information is lost in the hyperspectral acquisition. In this 

way, the fused HS may contain severe spatial distortions. Therefore, the HSI-MSI fusion for big spatial resolution 

differences is a very challenging problem, and more efforts need to be made to solve this problem. The key to 

solving this problem is estimating the spatial degradation model accurately, which can reduce the spatial 

distortions.  

The estimation of PSF and SRF  

Many fusion methods, such as Matrix Factorization ones, highly rely on the observation model, which assumes 

that the PSF and the SRF of the imaging sensor known. In the simulated data fusion experiments, these methods 

can obtain satisfactory fusion results based on the perfectly-known PSF and SRF. However, they may not produce 

good fusion results in real data fusion situations, since the PSF and SRF may not be perfectly known in practice, 

and needs to be estimated in advance.  

 

Computation Efficiency  

Since the increased size of HS and MS data availability, the computation efficiency is a very important factor to 

consider, in the procedure of selecting the appropriate data fusion algorithm. In remote sensing HS-MS fusion, 

the spatial size is often very large, and the number of spectral bands is usually over one hundred. Hence, the fusion 

approaches with the low computational cost are highly favored. Most subspace methods suffer from high 

computational complexities since they need to iteratively solve the complex optimization problem. One available 

way to reduce the computational cost is low-dimensional subspace representation, which can significantly reduce 

the size of the spectral mode by exploiting the redundancies in the spectral mode. The other way is towards deep 

CNN based approaches, which take an end-to-end way to predict the fused HS image without iterative schemes. 

What is more, they can be dramatically accelerated via the graphics processing unit (GPU) configurations.  

Zero-short Learning  
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The Deep Learning based fusion methods often take an end-to-end approach to learn the mapping from low-

resolution HSI and high-resolution MSI to fused HSI. The deep learning based methods can achieve promising 

performance in terms of quality of fused HSI and computation efficacy. However, methods in this category mainly 

have two disadvantages when applying them to real data fusion. Firstly, they suffer from insufficient training 

data. In practice, the training data for HS-MS fusion is often not available. Furthermore, the well-trained deep 

CNN may have limited generalization ability, since the observational models, spectral range, and the number of 

spectral bands of the training data and testing data may be different. The possible way to solve the problem is 

zero-short learning, which trains the deep CNN from the data to be fused. In the training procedure, the training 

data is generated by spatially downsampling the observed HS and MS, and the observed HS image is used as the 

output of a deep CNN. In this way, the spatial downsampling procedure for generating training data makes a 

difference, and the way of spatially downsampling procedure should be learned according to the spatial 

degeneration between the observed HS and MS. 

4.3.2. Data fusion of PRISMA Hyperspectral with S2 Multispectral Images 

 

In the course of the AFRI4Cast project, a major part of the EO data enhancement component will deal with the 

upgrading of the PRISMA hyperspectral images to a higher spatial resolution. PRISMA satellite payload includes 

a pushbroom HS camera operating in the visible, near infrared (VNIR) and shortwave infrared (SWIR) spectral 

ranges. Specifically, the HS imaging sensor covers the portion of the electromagnetic spectrum ranging from 400 

to 2500 nm with 10 nm spectral sampling through two partially overlapped spectrometers. Similar to other HS 

satellite missions the PRISMA HS sensor has a limited spatial resolution because of the limited amount of incident 

energy. Specifically, its groundsampling distance (GSD) is of 30 m. The aim of PRISMA spatial enchancement 

is to make the HS data applicable for providing vegetation indices and canopy biophysical parameters and crop 

disease modeling at a parcel level spatial scale. 

A natural solution to enhance the spatial resolution of a satellite HS image is to fuse it with a higher resolution 

multispectral (MS) image of the same scene, possibly acquired under the same conditions. However, PRISMA 

mission payload does not include a high spatial resolution MS sensor. Therefore, the only way to apply the HS–

MS fusion paradigm to PRISMA data is to exploit the high-resolution MS image provided by other satellite 

missions. In this context, a great opportunity is offered by the Sentinel-2 (S2) program. Specifically, the Sentinel 

2 multispectral bands with spatial resolution of 10 m (B2–B4 and B8) and 20 m (B5–B7, B8a, and B11–B12) 

cover a spectral range which is overlapped with that of the PRISMA sensor and can be exploited to enhance the 

spatial resolution of PRISMA data according to theHS–MS fusion framework (Acito et al., 2022). 

The PRISMA product to be used will be Level L2D, providing at-surface orthorectified reflectance with additional 

information of:  

 Aerosol Characterization Product  

 Water Vapour Map Product  

 Cloud Characterization.  

The geolocation correction will be carried out by using a Python package based on AROSICS algorithm. 

The proposed PRISMA spatial enhancement strategy consists of 3 main steps as shown in the following flowchart. 
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Figure 3. PRISMA - Sentinel 2 Data Fusion general framework (Acito et al., 2022). 

 

S2 Data Fusion 

The first step (named S2 data fusion) applies a fusion algorithm to the 10 and 20 m S2 images to obtain a 10 band 

MS image with the highest spatial resolution which will be used to bring the spatial resolution of the PRISMA 

image to 10 m. Αs to the S2 data fusion, the HP adaptation of the MTF–Gaussian Laplacian Pyramid (GLP)–

context-based decision (CBD) algorithm proposed in Acito et al. (2022) will be considered. MTF–GLP–CBD is 

a pansharpening algorithm belonging to the MRA class here chosen because of its computational efficiency and 

of the good fusion performance experienced on real S2 data. 

Coregistration of S2 and PRISMA Images  

The second step (coregistration) applies a registration procedure to the MS image resulting from the previous step 

and the PRISMA image. This step is necessary even in the case of geolocated data to compensate for the 

inaccuracy of pixel-level coordinates due to errors in the georeferencing process. Image coregistration will be 

performed assuming an affine transformation between the images and exploiting control points (Cps) detected in 

an unsupervised manner by the speeded-up robust feature algorithm (SURF).  

In general, feature-based techniques start from the extraction of interest points (IPs) independently from the two 

images to be coregistered named test image and reference image. To each IP, a feature vector is then assigned by 

exploring the characteristics of the image in a local neighborhood. In our case, the SURF algorithm (Acito et al., 

2022) is adopted to extract descriptors that are invariant to scale, rotation, and illumination. IPs from the two 

different images are tested to find pairwise correspondence between their descriptors. Pairs of IPs with the most 

similar descriptors are retained and represent the so-called CPs. Finally, the pixel coordinates of each CP in the 

two images are used to estimate, in accordance with a given model, the transformation that represents the 

geometrical distortion between the test and the reference image. Once the transformation is estimated, it is applied 

to resample the test image into the coordinate system of the reference image. The SURF-based procedure 

summarized above will independently be applied to each band of the two images, Fused S2 and PRISMA. The 

CPs extracted in all the bands will be merged together and used to estimate the geometrical distortion assuming 

an affine transformation with a scale ratio of 3, according to the GSDs of the two considered images. 

 

Hyperspectral -Multispectral Data Fusion  
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The third step finally applies a HS–MS pansharpening fusion approach to obtain a super-resolved PRISMA image. 

HS–MS fusion is surely the most critical step of the PRISMA spatial enhancement scheme. Several algorithms 

have been proposed in the past years, as summarized in the abovementioned review chapter. Most of them assume 

perfect coregistration of the two images, a hypothesis that is difficult to satisfy in practice. Regardless of the 

adopted coregistration algorithm, residual registration errors still remain that can deteriorate the performance of 

the HS–MS fusion procedure. For this reason, we propose two modified versions of the well-known smoothing 

filtered-based intensity modulation (SFIM) algorithm specifically designed to be robust to residual registration 

errors, as our main HS–MS fusion scheme.  The hyperspectral adaptation of the SFIM algorithm called SFIM-

HP. It sharpens the low spatial resolution image by multiplying the upsampled lower resolution image by the ratio 

between the higher resolution image and its low-pass filtered version on a pixel-by-pixel basis. Of course, the 

main assumption/precondition is that PRISMA and S2 images must be acquired on the same scene and with the 

minimum time difference in order to limit the potential seasonal changes in the monitored surface.  

In general Acito et al. (2022), SFIM-HP introduces relatively small spectral distortions on the super-resolved 

image. Conversely, it is sensitive to coregistration errors. In addition, it also requires knowledge of the parameter 

c which may not be available in real applications. Notice that, despite the efforts made to choose the best algorithm 

to geometrically align the two images, residual coregistration errors will always occur in practice and should be 

properly considered in the fusion strategy. The previous considerations suggest the use of modified versions of 

SFIM-HP that are more robust to residual registration errors and do not require the knowledge of c. Such robust 

versions of SFIM-HP will be referred to as RSFIM-HP. Acito et al. (2022), suggest two modifications on the 

implementation strategy of RSFIM-HP, named soft and hard respectively. 

 
Figure 4. PRISMA (Y) - Sentinel 2 (X) data fusion for Spatial Enhancement (Acito et al., 2022). 

 

The hard strategy represents the natural choice in absence of noise in the data. In the presence of noise, which in 

each pixel can be realistically modeled as a spectrally uncorrelated zero mean random vector, the hard strategy 

tends to bring the noise components of the HS image in the super-resolved image. To mitigate noise effects, the 

soft strategy is proposed where the weighting coefficients are defined so as to assign greater weights to solutions 

more consistent with the higher spatial resolution image. RSFIM-HP-soft is expected to be more robust to noise 
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thanks to the filtering effect introduced by the weighted sum. This is particularly true in the homogeneous regions 

of the scene where the weights are very similar. Conversely, it is expected to introduce a smoothing effect on 

sharp variations thus performing worse than RSIM-HP-hard in preserving edges.  

This main HS data fusion scheme of RSFIM-HR will be compared – benchmarked to a Deep Learning CNN 

approach, to test the effectiveness of the fusion result, on a “real” remote sensing dataset.  A residual network 

(ResNet) is formed by stacking several residual blocks together. Each residual block consists of convolution 

layers, batch normalization, and activation layers. The batch normalization processes the data and brings 

numerical stability by using some scaling techniques without distorting the structure of the data. The activation 

layer is added into the residual network to help the neural network to learn more complex data. The CNN or deep 

learning method uses ReLU (rectified linear unit) function in the activation layer to accommodate the nonlinearity 

nature of the image data while providing the output. The residual blocks allows information to flow from the first 

layer to the last layers of the network by adding residual or skip connection strategies. Therefore, ResNet can 

effectively utilize features of the input data to the output of the network and thus alleviate gradient vanishing 

problems (Priya and Rajkumar, 2022). 

The ResNet fusion architecture for HS–MS fusion, as presented by Priya and Rajkumar (2022) uses residual or 

skip connection which helps to improve the feature extraction capability from the images. For implementation, a 

1D ResNet will be used to extract the spectral features from the PRISMA image (Spectral generative network) 

and 2D ResNet for extracting spatial features from S2 Fused Image (Spatial generative network). Both 1D and 2D 

ResNet architecture consist of three residual blocks each having two convolutional layers and 64 filters.   

 

 
Figure 5. Residual block with two stacked layer (Priya and Rajkumar, 2022). 

 

A 3X3 kernel size for 2D Resnet and 1X3 kernel size for 1D Resnet will be used for extracting the spatial and 

spectral data from MSI and HSI. Each residual block will employ a ReLU activation layer to accommodate the 

nonlinearity constraints included in the proposed hyperspectral image fusion model. Finally, the feature 

embedding and image reconstruction process are performed using another 2D CNN. The spectral information 

from PRISMA and spatial data from Fused S2 will finally be extracted using ResNet by element-wise 

multiplication. The architecture of the ResNet model is shown on Table 10.  
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Figure 6. The framework of the proposed ResNet Fusion architecture (Priya and Rajkumar, 2022). 

The evaluation aspects of the Hyperspectral Data fusion products and the relevant validation methodology will be 

presented on the AFRI4Cast deliverable D6.   

4.3.3. Service outputs 

 

The PRISMA spatial enhancement component will use the proposed methodology in order to deliver to 

AFRI4Cast the following product services:  

Hyperspectral Bands: Image layers in a continuum of 239 spectral bands ranging from 400 to 2500 nm, 66 in 

the VIS-NIR, and 173 in the SWIR spectrum, with a spectral resolution smaller than 12 nm and a spatial resolution 

of 10 m GSD.  

Vegetation Indices: The Rust disease assessment will be accomplished with the aid of narrowband Vegetation 

Feature Indices needed to monitor the crop status and detect the presence of diseases or pests which could affect 

the crop nutrition quality and yield. AFRI4Cast will regard the following Vegetation Indices:  

 

 Normalized Difference Vegetation Index, NDVI = (R830−R675)/(R830+R675)  

 Structural Independent Pigment Index, SIPI = (R800−R445)/(R800−R680)  

 Photochemical Reflectance Index, PRI = (R570–R531)/(R570+R531)  

 Plant Senescence Reflectance Index, PSRI = (R680−R500)/R750  

 Modified Simple Ratio, MSR = (R800/R670−1)/sqrt(R800/R670+1)  

 

 All Vegetation Indices will be provided at a 10 m spatial resolution. 
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Table 10. Architecture of the ResNet model. 

Name Layer Kernel Size 
Input 

Size 
Input Content 

Strid

e 

Pad-

ding 

Activa-

tion 

Output 

Size 

Output Con-

tent 

Input Layer Conv 1 

ID-CNN 1*3 1 1D Image(Spectral) 1 same ReLU 64 1DConv1 

2D-CNN 3*3 2 2D Image(Spatial) 1 same ReLU 64 2DConv1 

 

Residual Block1 

Conv 2 

1D-CNN 1*3 64 1DConv1 1 same ReLU 64 1DConv2 

2D-CNN 3*3 64 2DConv1 1 same ReLU 64 2DConv2 

Conv 3 

1D-CNN 1*3 64 1DConv2 1 same ReLU 64 1DConv3 

2D-CNN 3*3 64 2DConv2 1 same ReLU 64 2DConv3 

Skip Connection Add 1  1DConv1 + 1DConv3  1DResB1 



D3 

39 
                                                                                                                                                                         

   
 

2DConv1+ 2DConv3 2DResB1 

Residual Block2 

Conv 4 

1D-CNN 1*3 64 1DResB1 1 same ReLU 64 1DConv4 

2D-CNN 3*3 64 2DResB1 1 same ReLU 64 2DConv4 

Conv 5 

1D-CNN 1*3 64 1DConv4 1 same ReLU 64 1DConv5 

2D-CNN 3*3 64 2DConv4 1 same ReLU 64 2DConv5 

Skip Connection Add 2 

  1DConv1 + 1DResB1 + 1DConv5     1DResB2 

  2DConvt1 + 2DResB1 + 2DConv5     2DResB2 

Residual Block3 Conv 6 1D-CNN 1*3 64 1DResB2 1 same ReLU 64 1DConv6 



D3 

40 
                                                                                                                                                                         

   
 

2D-CNN 3*3 64 2DResB2 1 same ReLU 64 2DConv6 

Conv 7 

1D-CNN 1*3 64 1DConv6 1 same ReLU 64 1DConv7 

2D-CNN 3*3 64 2DConv6 1 same ReLU 64 2DConv7 

Skip Connection Add 3 

  
1DConv1 + 1DResB1 + 1DResB2 + 

1DConv7 
    1DResB3 

  
2DConv1 + 2DResB1 + 2DResB2 + 

2DConv7 
    2DResB3 

Max pooling Conv 8 

1D-CNN 1*3 64 1DResB3 1 same ReLU 64 1DConv8 

2D-CNN 3*3 64 2DResB3 1 same ReLU 64 2DConv8 

Flatten layer Conv 9 1D-CNN 1*3 32 1DConv8 1 same ReLU 1 Spectral data 
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2D-CNN 3*3 32 2DConv8 1 same ReLU 1 Spatial data 

Upsampling 

layer 

Conv 

10 
2D-CNN 3*3 1 Spectral/Spatial data 1 same ReLU 32 

Spectral*Spa-

tial 

Output layer 
Conv 

11 
2D-CNN 3*3 32 Spectral * Spatial 1 same ReLU 64 Fused Image 
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4.4. Canopy Biophysical parameters estimation from hyperspectral remote sensing    
    

Biophysical parameter retrieval is an approach in remote sensing that aims to estimate parameters which have 

physical meaning related to properties of living organisms. The goal is to provide values directly relating to the 

biophysical state, but independent of acquisition conditions and technology. Important parameters describing 

canopy structure include leaf area index (LAI), green cover fraction (fCover), fraction of absorbed 

photosynthetically active radiation (fAPAR), canopy chlorophyll content (CCC), canopy water content (CWC), 

etc.. These canopy biophysical parameters are synthetically defined as (S2ToolBox Level 2 products, 2020): 

 LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit 

horizontal ground area. This is an intrinsic canopy primary variable that should not depend on observation 

conditions. LAI is strongly nonlinearly related to reflectance. 

 FAPAR corresponds to the fraction of photosynthetically active radiation absorbed by the canopy. It 

depends on canopy structure, vegetation element optical properties and illumination conditions. FAPAR 

is relatively linearly related to reflectance values, and will be little sensitive to scaling issues. 

 FVC is used to separate vegetation and soil in energy balance processes, including temperature and 

evapotranspiration. It is computed from the leaf area index and other canopy structural variables and does 

not depend on variables such as the geometry of illumination as compared to FAPAR. Because of its 

quasi-linear relationship with reflectances, FVC will be only marginally scale dependent. 

 CCC is a very good indicator of stresses including nitrogen deficiencies. It is strongly related to leaf 

nitrogen content (Houlès et al., 2007). This quantity can be calculated both at the leaf level and at the 

canopy level by multiplication of the leaf level chlorophyll content by the leaf area index. Studies have 

demonstrated that a direct estimation of CCC is more robust and accurate than an estimation based on the 

product of the individual estimation of LAI and Cab (Weiss et al., 2004). 

 CWC is proposed as a possible candidate to estimate water present in a plant. Water represents between 

60 % and 80% of the living plant mass. Since radiation is absorbed significantly by water in the near and 

middle infrared, the spectral configuration of Sentinel-2 allows accessing this variable. 

Methods to retrieve these parameters from remote sensing data fall into two main categories. Statistical models 

empirically match data to a biophysical variable. Univariate techniques use a single quantity derived from the 

data, usually a vegetation index whereas multivariate techniques link a combination of measurements at different 

wavelengths to one or more biophysical parameters. Physically based modeling is an alternative approach which 

uses advanced radiative transfer models to describe the transfer and interaction of radiation inside a leaf or canopy 

based on robust physical, chemical, and biological processes. They compute the interaction between solar 

radiation and plants and provide as such a better understanding between biophysical variables and reflectance 

characteristics. The PROSAIL model, a fusion of PROSPECT (leaf reflectance and transmittance) and SAIL 

(plant canopy reflectance), has been used for the last thirty years to simulate the spectral and directional reflectance 

of plant canopies in the solar domain. It links the spectral dimension of the reflectance, which is mainly related to 

the biochemical content of the leaves, to the directional dimension, which is mainly related to the architecture of 

the canopy. PROSAIL has been widely used to develop new methods to retrieve biophysical properties of 

vegetation and to prepare new space missions. Applications are numerous in agriculture, forestry, ecology, 
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climatology, exobiology, etc. Because of its ease of use, robustness and regular updates, PROSAIL has become 

one of the most popular tools for radiative transfer in vegetation. PROSAIL model and our approach to estimate 

LAI parameter from PRISMA and/or Sentinel-2 images will be described in the following paragraphs.  

Regarding the statistical models, hyperspectral sensors allow to compute many spectral indices capable to 

highlight specific traits of the vegetation. A list of them with the corresponding formulas are described in 

Appendix 1.  

Physically based methods were shown to be more robust, accurate, and transferable over various cover types and 

environments (Kganyago et al., 2021). However, physically based approaches are ill-posed (i.e., different 

combinations of canopy parameters may correspond to almost similar spectra, thus yielding inconsistent results), 

complex, and computationally expensive. This is much true if the objective is the development of a model capable 

to exploit hyperspectral data. In contrast, nonparametric approaches, i.e., MLRAs (Machine Learning Regression 

Algorithm), are relatively fast, and can learn non-linear relationships. Recent studies show that the coupling of 

physically based approaches and MLRAs, yields better prediction accuracies. These approaches are available 

operationally, such as the Sentinel-2 Level-2 Prototype Processor (SL2P) implemented in the Sentinel Application 

Platform (SNAP) for Sentinel-2 MSI. Taking into account the results of some validation and intercomparison 

studies (Bochenek et al., 2017; Brown et al., 2021; Kganyago et al., 2020) a specific ML approach is developed 

for the areas of interest, the crops under study and the characteristics of the satellite sensors we aim to exploit. 

4.4.1. PROSAIL Model description  

 

RTM-inversion (Radiative Transfer Model) methods have the advantage of a physical foundation that allows their 

application on a global scale (Yebra et al., 2013) and the knowledge of the satellite observation angles allows their 

inclusion in the inversion method. In optical remote sensing of vegetation, RTMs are used to model the phenomena 

of light interception by plant canopies and to interpret vegetation reflectance in terms of biophysical characteristics 

(Jacquemod et al., 2009). They have been widely used to design and exploit vegetation indices and to develop 

inversion procedures to estimate vegetation parameters from remotely sensed data. The PROSPECT leaf optical 

properties and the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy bidirectional reflectance model are 

still the most popular and accurate (Jacquemod et al., 2000). In the nineties, these models have been coupled into 

PROSAIL, which allows to model both the spectral and the directional variation of canopy reflectance as a 

function of leaf biochemical properties such us chlorophyll content, water content, pigment concentration on the 

leaf side, and in terms of Leaf Area Index (LAI), leaf orientation on the canopy side. Furthermore, in 2001 SAIL 

was coupled with the Jasinski geometric model (Jasinski et al., 1989).  to create GeoSail (Huemmrich, 2001), 

allowing to properly describe radiation reflected by discontinuous vegetation. The PROSPECT and SAIL models 

are coupled so that the simulated leaf reflectance and transmittance from PROSPECT are fed into the SAIL model, 

completed with information about soil optical properties and illumination/observation geometry (Fig. 7). 
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Figure 7. Calculation of canopy reflectance using the coupled PROSPECT + SAIL models. Variable symbols 

are explained in Table 11 and in the text. 

 

 

Table 11. Overview of the input parameters of the PROSAIL model with symbols, units and typical variable 

ranges published in the literature for five different crops that have been analyzed most often by the studies. 

Parameter Symbol Units Typical Ranges for Crops 

   Maize [1, 2, 3] Wheat [3, 4] Rice [5, 6] 

Leaf Model: (PROSPECT-D) 

Leaf structure index N 
Unit 

less 
1.2–1.8 1.0–2.5 1.0–2.0 

Chlorophyll a + b 

content 
Cab 

(µg/cm
2) 

0–80 0–80 0–80 

Total carotenoid 

content 
Ccx 

(µg/cm
2) 

1–24 1–24 4–17 

Total anthocyanin 

content 
Canth 

(µg/cm
2) 

- - - 

Brown pigments Cbp 
Unit 

less 
0–1 0–1 0–1 

Dry matter content, 

or leaf mass per area 

Cm/LM

A 
(g/cm2) 0.004–0.0075 0.001–0.02 0.001–0.02 

Equivalent water 

thickness, or water 

depth 

EWT/C

w 
(cm) 0.01–0.03 0.001–0.05 0.001–0.002 

Canopy Model: (4SAIL) 
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Parameter Symbol Units Typical Ranges for Crops 

   Maize [1, 2, 3] Wheat [3, 4] Rice [5, 6] 

Leaf area index LAI (m2/m2) 0–7 0–8 0–10 

Average leaf 

inclination angle * or: 

Leaf inclination 

distribution function 

** 

ALIA 

LIDFa/b 

(°) 

(°) 
20–70 20–90 20–80 

Hot spot parameter Hot (m/m) 0.01–0.2 0.01–0.5 0.01–0.1 

Soil reflectance ρsoil (%)  

Soil brightness factor αsoil 
Unit 

less 
0.5–1.5 *** or 0–1 **** 

Fraction of diffuse 

illumination 
skyl 

Unit 

less 
23% for a standard clear sky 

Sun zenith angle SZA/θs (°) 

According to actual conditions during data/image acquisition 

Viewing (observer) 

zenith angle 
OZA/θv (°) 

Relative azimuth 

angle between sun 

and sensor 

rAA/øSV (°) 

* characterizes an ellipsoidal leaf inclination model; ** spherical, planophile, erectophile, uniform, extremophile or plagiophile types. 

LIDF is characterized by LIDFa, which controls the average leaf slope and LIDFb which controls the distribution’s bimodality; *** to be 

multiplied with single ρsoil spectrum; **** scaling factor between the two model-implemented ρsoil spectra (wet versus dry). 

 

 

The leaf optical properties model PROSPECT is central to the success of PROSAIL as it simulates the spectral 

range from 400 to 2500 nm with only a limited number of parameters, describing the biophysical properties of a 

single leaf. PROSPECT as received several modifications. Most recent versions include, a part the leaf mesophyll 

(N), chlorophyll a + b concentration (Cab), and leaf water content (Cw), other parameters, such as dry matter content 

(Cm) or leaf mass per area (LMA), brown pigments (Cbp), and total carotenoid content (Ccx). In the newest version 

“PROSPECT-D”, besides a new calibration of specific absorption coefficients (SAC) of each pigment, leaf 

anthocyanin content (Canth) was added. 

The SAIL radiative transfer model is based on the 1-D model developed by Suits to simulate bidirectional 

reflectance of a canopy. PROSAIL also permits to calculate the fraction of absorbed photosynthetically active 

radiation (fAPAR), and the fraction of vegetation cover (fCover). The SAIL model represents the canopy structure 

in a simple way and requires only a few parameters. These include leaf reflectance and transmittance (obtained 

from the PROSPECT output), leaf area index (LAI), and leaf inclination distribution function (LIDF). 

Additionally, information about viewing geometries, i.e., sun and sensor (observer) zenith angles (SZA and OZA, 

respectively) as well as the relative azimuth angle between both (rAA), must be provided by the user. The fraction 

of diffuse incident solar radiation (skyl) is another input into the model. Moreover, a soil reflectance factor (αsoil) 

is used to mimic moisture-induced reflectance changes of the upper soil layer (ρsoil). 
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Summarizing, the current PROSAIL model calculates the canopy bidirectional reflectance from 400 to 2500 nm 

in 1 nm increments as a function of up to 16 input parameters, defining pigment and water content, canopy 

architecture, soil background, hot spot, solar diffusivity, as well as observation geometry. All parameters of the 

PROSPECT and SAIL model family are listed in Table 11, including their symbols and units. Additionally, crop-

specific parameter ranges are listed for crops of interest in AFRI4Cast: maize, wheat, rice. Note that these ranges 

rely purely on values found in the literature and may underlie changes. 

PROSAIL has been used in forward mode, i.e., calculation of canopy reflectance using different input parameters, 

for diverse purposes. For example, a common objective of studies using the model in forward mode was to 

examine the sensitivity of bi-directional canopy reflectance to different factors, for instance the effect of 

parameters on the red edge position (REP) of vegetation. Other studies evaluated the sensitivity of canopy 

reflectance to leaf optical properties. In this way, researchers found for example that the sensitivity of canopy 

reflectance to leaf reflectance is significant for large vegetation cover fractions only in spectral domains with low 

absorption. Also, the influence of the observation geometry on red and near infrared (NIR) reflectance was 

investigated. Other factors, such as sensitivity to canopy architecture, soil background reflectance, and 

atmospheric conditions were examined. The PROSAIL model was also exploited for the design of new (improved) 

vegetation indices. 

A scheme of as PROSPECT and SAIL are coupled is given in Fig. 8. 

 

 
Figure 8. PROSPECT + SAIL coupling scheme (Kattenborn, 2019): PROSPECT uses a description of the leaf 

in terms of its structure (N) and biochemical composition (Cab, Canth, Cw, …) to output the leaf transmittance 

and reflectance. These values are used by SAIL to build the canopy model in conjunction with the leaf 

inclination and density (LIDF, LAI) and a soil spectrum (ρsoil, psoil). The solar illumination parameters (SZA, 

SAA) and the viewing angles (VZA, VAA) allow to determine the canopy reflectance that reaches the viewer. 
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4.4.2. Review on PROSAIL Inversion methods for the retrieval of LAI parameter - Application 

on AFRI4Cast 

 

RTM Inversion Strategy 

Our vegetation modelling strategy is based on (Danner et al., 2021) and (Pampanoni et al., 2022), which can be 

considered the state of the art regarding LUT-based approach and ML inversion for LAI from satellite images, 

based on the PROSAIL-adjacent RTMs. The combination of PROSPECT-D and 4SAIL is used to model 

croplands, which are assumed to be homogeneous vegetated pixels. To model the cropland understory we will 

combine the pyprosail package dry and wet soil spectra in different proportions using the psoil parameter. 

The RTM inversion strategy applied to these two model combinations is based on the use of LUTs, again similarly 

as (Danner et al., 2021). Before describing the methodology adopted to create and invert the LUTs, we will 

perform a sensitivity analysis of the two model combinations in order to verify that the model is sensitive to the 

variables that allow us to calculate the LAI, and in particular to identify the ideal Sentinel-2 and PRISMA channels 

to use to successfully perform the inversion.  

Sensitivity Analysis of the Combined Models  

Before attempting to retrieve the biophysical parameters from satellite observations using a model inversion 

technique, it is mandatory to verify the feasibility of the retrieval on a variable-by-variable basis. If a variable does 

not have any significant effect on the variation of the model output, it will be very difficult to invert it, because 

the model will barely react even to large variations of the variable. To this end, we will use Global Sensitivity 

Analysis (GSA) (Sobol, 2001, 1993), often used to quantify the effect of the uncertainty on a variable on the 

uncertainty of the model output (Saltelli, 2002). In particular, the Sobol method allows to obtain both first-order 

sensitivity indices, which quantify the contribution of each variable per se, i.e. while all the other variables are 

kept constant, and higher-order sensitivity indices that account for the interactions between variables. The 

possibility to take into account the interactions between variables is fundamental, because some variables that 

may appear to be not significant at the first-order, may become significant through interactions. The total-order 

sensitivity index of the i-th variable is the sum of the first-order sensitivity index of that variable and of all the 

higher-order sensitivity indices associated to its interactions with the other variables. These calculations will be 

carried out using the SALib Python library (Herman and Usher, 2017), which makes it straightforward to construct 

the necessary sequences for each model parameter through the Saltelli module, requiring only the definition of 

the variation interval of each variable as an input. The module returns quasi-random, low-discrepancy sequences 

calculated in order to sample the parameter space as uniformly as possible by exploiting Saltelli’s sampling 

scheme, which is an improvement of Sobol’s (Herman and Usher, 2017). The sequences are then used as inputs 

for the pyprosail Python library, and the resulting outputs are ran through the sobol.analyze function which 

performs the Sobol Global Sensitivity Analysis returning both first-order indices and total-order indices. 
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Table 12. Example of Parameter bounds used for the GSA of the combination of PROSPECT-D and 4SAIL. 

 
 

 

 
 

LUT-based Inversion 

The core idea is based on a coupling scheme of PROSAIL as a well-known RTM with fast and an efficient machine 

learning regression algorithm. 

 

 

 

Figure 9. Example of GSA of the PROSPECT-D + 4SAIL radiative transfer models. The stacked 

plot shows the progression of the total order sensitivity indices of each parameter of the combined 

model in the portion of the spectrum supported by PROSPECT. Viewing angles have not been 

included in the GSA, since their value is always known. This figure was taken from (Pampanoni et 

al., 2022). 

 



D3 

49 
                                                                                                                                                                         

   
                                                                            

 

Generation of the LUTs  

To generate the LUT, the PROSAIL model was run in forward mode to simulate canopy reflectance for an 

appropriate number of parameter combinations. the LUT calculation process takes place as follows: 

 Definition of the LUT target size: we tested LUT sizes ranging from 10000 to 200000 samples. A LUT 

size of 100,000 parameter combinations was found to achieve a good compromise between the computer 

resource requirement and the accuracy of canopy variable estimation (Weiss et al., 2004). The 100,000 

parameter combinations were randomly generated with uniform or normal distributions and specific 

ranges for the variables. 

 Definition of the LAI minimum and maximum values. 

 Creation of first-guess distributions for each variable: after setting a seed for the random number 

generator, we independently create distributions of values for each model parameters. 

 Elimination of unlikely combinations 

 Sample selection: once we have an adequate number of samples, in order to match the LUT size to the 

target sample size, we choose among the available profiles those that generate an equal number of LAI 

samples in a number of 10%-wide LAI bins between the minimum and maximum target LAI values. This 

ensures that we have the same number of profiles in each of these bins, and therefore that we sample 

equally profiles that generate different ranges of LAI. 

 LUT calculation: the reflectance spectra outputted by the model are convolved using the Spectral 

Response Function (SRF) of the target sensor. 

ML inversion 

Machine learning methods saw a surge of interest in the past decade for their ease of implementation and their 

computational speed after the training phase. Random forest regression (RFR) is an ensemble algorithm based on 

multiple decision trees with frequent use for functional traits retrieval in remote sensing (Izquierdo-Verdiguier 

and Zurita-Milla, 2018). The mixture of bootstrapping and random feature selection makes it less sensitive to 

outliers and noise (Waske et al., 2009). RFRs are out-of-bag predictors, meaning that they can only predict values 

within the range they were trained (Breiman, 2001). We will use python’s scikit-learn package (Pedregosa et al., 

2011) to do the conjoint pre-processing, fitting, prediction and evaluation of target variables with RFR. Following 

(Danner et al., 2021), for RFR, neither the variation of max. features, nor the number of estimators, nor the 

minimum number of samples per leaf had a notable impact on the model’s performance. Best results for estimation 

of LAI are obtained when 75% of the features are used for training (max. feature = 0.75). A higher number of 

estimators in the random forest turned out to be slightly beneficial for the training success. The minimum number 

of samples per leaf for each decision tree turned out to be quite insensitive. The best results with a 2000 

combinations LUT (rRMSETest = 0.25, R2Test = 0.82) were obtained (Danner et al., 2021) with the following 

parameterization: 

• Max. features: 0.75 

• Min. samples per leaf: 1 

• NEstimators: 100+ 
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Max. features did not have any impact on model size, but the minimum number of samples per leaf scaled with 

inverse potency and could therefore be increased to reduce model size. 

 

 

4.4.3. Alternative LAI sources 

 

An alternative source of LAI data requested to feed crop growth model like AQUACROP, which we could use 

while we collect ground data to develop an approach based on PROSAIL inversion method, is the one provided 

by the Biophysical Processor implemented in SNAP (Sentinel Application Platform Toolbox).  

They method implemented in SNAP consists in generating a comprehensive database of vegetation characteristics 

and the associated Sentinel-2 top of canopy (TOC) reflectances. Neural networks have been trained to estimate 

the canopy characteristics from the TOC reflectances along with set corresponding angles defining the 

observational configuration. Different neural network architectures have been implemented, the NNET 20m and 

the NNET 10m. They use a different combination of input bands as shown in the table below as input for the 

neural network in addition to the auxiliary information cos(viewing_zenith), cos(sun_zenith), 

cos(relative_azimuth_angle).  

 

Table 13. List of bands used by Neural Network methods implemented in the SNAP biophysical processor. 

S2 band Wavelength (μm) Resolution (m) NNET 20m NNET 10m 

B3 0.560 10 X X 

B4 0.665 10 X X 

 

Figure 10. Validation on simulated test data of the best performing RFR parameterizations for each 

biophysical variable, trained from synthetic LUT5000 by (Danner et al., 2021). Density of scatter points is 

depicted by colors ranging from purple (sparse) to yellow. 
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B5 0.704 20 X  

B6 0.740 20 X  

B7 0.783 20 X  

B8 0.842 10  X 

B8A 0.865 20 X  

B11 1.610 20 X  

B12 2.190 20 X  

 

The NNET 10m uses only 10m bands and so it produces a 10m resolution output product, however it is capable 

of computing only the LAI, FAPAR and FVC indexes. 

Both NNET 10m and NNET 20m are composed by three layers: 

 one input layer: made of 11 normalized input data for the NNET 20m, 6 for the NNET 10m; 

 one hidden layer with 5 neurons with tangent sigmoid transfer functions 

 one output layer with a linear transfer function 

In the final implementation there are two NNET 20m, one trained with S2A data and one with S2B data, and two 

NNET 10m, again trained for S2A and S2B respectively. This allows to take in account the small differences in 

the reflectance response of the different sensors. 

The S2 SNAP Toolbox biophysical variable retrieval algorithm is based on specific radiative transfer models 

associated with strong assumptions, particularly regarding canopy architecture (turbid medium model). All the 

variables derived from such algorithms should be seen as effective, i.e. the variables that would correspond to the 

measured satellite signal reflected by a canopy verifying all the assumptions made through the radiative transfer 

models. he algorithm is "generic", meaning that it should apply to any type of vegetation with a reasonable 

performance. It is based on methods that have already been proven to be efficient and have been implemented to 

generate biophysical products from MERIS, SPOT VEGETATION and Landsat sensors (ATBD, 2016). 

4.5. Spatiotemporal enhancement of ECOSTRESS imagery 

Over this chapter there is a brief presentation of the current state of the art on the discipline of thermal fusion 

and sharpening algorithms on remote sensing data. Subsequently the methodology that will be followed for the 

spatiotemporal enhancement of ECOSTRESS thermal data is documented, followed by a description of the 

service outputs. 

4.5.1. Data Fusion on thermal data. A review of state of the art 

 

Land surface temperature (LST), the skin temperature of the Earth surface, is one of the major variables of  climate 

systems, and has been used as a key parameter in modeling surface energy balance (Hain and Anderson, 2017). 

LST interacts with other factors such as soil moisture, air temperature, and evapotranspiration. In particular, LST 

has been widely used in investigating various socio-environmental problems.  
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LST has relatively large variation in both spatial and temporal domains due to the complicated characteristics of 

environmental factors such as vegetation coverage, topography, soil texture, and land cover patterns, which are 

closely related to LST. Although in-situ ground measurements provide accurate surface temperature at a location, 

they do not provide spatially continuous LST information over vast areas. Satellite remote sensing has been a 

good alternative to spatiotemporal LST delineation from regional to global scale. Thermal infrared (TIR) sensors 

are a major source for producing satellite-based LSTs under clear sky conditions.   

Among various satellite-based LSTs, MODIS LST is the most widely used LST product in modeling atmosphere, 

ocean and land processes on the Earth thanks to its spatiotemporal coverage and longevity (> 20 years). MODIS 

sensors onboard Terra and Aqua satellites collect data providing LST four times a day (local solar times of 10:30 

am and 10:30 pm for Terra, and 1:30 am and 1:30 pm for Aqua) at 1 km spatial resolution. MODIS LST is 

generated based on the generalized split-window algorithm and is provided as global grid data at multiple time 

scales (i.e., daily, eightday, and monthly LSTs).  

One of the drawbacks of LST products at   relatively coarse spatial resolution (i.e., 1 km) like MODIS LST or 

Sentinel 3 is that they cannot be used at the context of agricultural studies. With the increasing demand of satellite 

derived products in various areas under changing climate conditions, information of detailed thermal environment 

on the Earth surface at high resolution (e.g., 10-100 m) is required (Hulley et al., 2019). In particular, the use of 

1 km MODIS LST over urban areas showing  very heterogeneous thermal surface characteristics is limited (Yoo 

et al., 2020).  

There are several satellite sensors that globally provide fine resolution (~100 m) LSTs, such as Landsat series and 

ECOSTRESS. However, their temporal resolutions are relatively low around 16 days, limiting investigation of 

temporal variation of LSTs. To solve the trade-off between the spatial and temporal resolution of remote sensing-

derived products such as LST, many studies have provided spatiotemporal downscaling methods using multi-

sensor data. In particular, due to the complexity of thermal landscapes, many factors should be considered when 

performing thermal downscaling which is also known as thermal sharpening or disaggregating (Weng et al., 

2014). 

The thermal downscaling of 1 km MODIS LST through a multitude of techniques can generate high spatial 

resolution daily LST products with medium spatial resolution.  

Many approaches for thermal downscaling of MODIS LSTs have been developed during the past decade showing 

varied performance and efficiency. Each approach has its own merits and limitations, and there are still key 

challenges that should be carefully addressed in any thermal fusion attempt.  

Kernel-driven methods  

 

The kernel-driven method is the most frequently used thermal downscaling approach in recent years. The kernel-

driven method spatially aggregates high resolution input variables matching the coarse resolution LST scale, then 

models the relationship between LSTs and the upscaled input variables. Finally, the method applies the developed 

model to the original high resolution input variables, called kernels, to produce high resolution LSTs. 

In addition, most kernel driven method applied a residual correction process originally suggested by Kustas et al. 

(2003).This process generally uses the following steps:  
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1. aggregating the simulated  high resolution LST (LSThigh) to the original coarse resolution LST 

scale   

2. subtracting the aggregated LSThigh (LSTag) from original coarse resolution LST (called 

residuals; Δ) 

3. resampling the residuals to LSThigh scale and adding these residuals to the LST high for 

generating downsampled  LST  

 

The spatial resolution of downscaled LST is determined by the resolution of the kernels. There are many factors 

that affect the performance of the kernel-driven approach, including types of kernels and modeling techniques. 

Spectral reflectance data at higher spatial resolution (i.e., red and near- infrared -NIR - bands) can be used as 

kernels for thermal downscaling of LST images produced at the same time. In particular, the normalized 

difference vegetation index (NDVI) is calculated using the red and NIR bands. Since there is a linear relationship 

between NDVI and LST, NDVI has been used as a useful kernel for thermal downscaling. This downscaling 

approach using NDVI is the basic kernel- driven method, which is called the thermal sharpening algorithm 

(TsHARP).  

 

 
Figure 11. Flowchart of kernel based downsampling of MODIS LST data. 

 

Fusion-based methods  

  

Fusion-based methods determine the relationship between the image pairs (known) of fine resolution LST and 

coarse resolution LST, and downscale coarse resolution LST (e.g., MODIS LST) when fine resolution LST is not 

available. Compared to the kernel-driven methods that depend on kernel acquisition time, the fusion-based 

methods are less restrictive in selecting the target date of Downsampled LST in that they directly model two LST 

images instead of the relationship between LST  and kernels (Xia et al., 2019). 
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Yin et al. (2021) proposed a deep learning-based spatiotemporal temperature fusion network (STFN), which fuses 

images based on convolutional neural networks (CNN) handling the non- linearity of LST temporal changes while 

the existing fusion-based methods used linear models. In their study, STFN produced better performance (RMSEs 

of 1.40 and 1.28K for two study sites) than other state of the art fusion methods like ESTARFM (RMSEs of 1.90 

and 1.49K).  

 

Open issues and challenges in thermal sharpening methods  

 

Various approaches have been proposed to spatially downscale MODIS LST for the past decade. While their 

performances have gradually improved, there are still challenges and limitations. Major issues and challenges to 

discuss here are: 

 Uncertainty in LST retrievals 

There are varied LST retrieval algorithms depending on satellite data used (i.e., MODIS, Landsat, and ASTER). 

MODIS 1 km LST is retrieved using a generalized split-window (GSW) algorithm based on brightness 

temperature measured at MODIS band 31(10.78-11.28 μm) and 32 (11.77-12.27 μm), and respectively other 

thermal sensors that map LST like Sentinel 3 or ECOSTRESS have their own LST retrieval model.  

Furthermore, each LST product has its own retrieval error, which is another challenge for the accurate evaluation 

of LST downscaling. Major LST retrieval error sources include the lack of understanding for the effects of 

atmospheric attenuation, insufficient information of the emissivity, and the uncertainties of input factors used for 

LST retrievals (Ghent et al., 2019). Emissivity is a critical factor in satellite based LST retrievals. It is well known 

that small uncertainty in the emissivity (~1%) can result in an LST retrieval error > 1K (Chen et al., 2016).  In 

summary, the inherent errors of satellite-based LSTs that are used for training and validation of downscaling make 

the objective evaluation of LST downscaling difficult.   

 Low thermal contrast  

The literature shows that downscaled LST has relatively low thermal contrast when compared to high resolution 

reference LST, which is called blurring effect (Ebrahimy and Azadbakht, 2019; Li et al., 2019). This problem 

often occurs when the kernel-driven method with machine learning is used for LST downscaling. Most machine 

learning approaches tend to estimate output to minimize errors, which are related to the distribution range of 

training data (Yoo et al., 2020).  

 Nonlinearity of LST temporal change 

The fusion-based methods have been gradually developed, but there remain issues where typical fusion based 

techniques (i.e., STARFM) assume that the output DLST is linearly related to input LSTs. In fact, conventional 

fusion-based methods assume that the surface cover type and systematic errors do not change much over time 

because they were originally suggested for downscaling the reflectance. Unfortunately, while reflectance changes 

slowly with time, LST has rapid temporal change with nonlinearity (Mohamadi et al., 2019). To solve this 

challenge, some fusion-based studies tried to consider the LST temporal change using the MODIS annual cycle 

parameters (Weng et al., 2014) or thermal components based on the nonnegative matrix factorization extracted 

from the Landsat 8 red, near infrared (NIR) and thermal infrared band (Wang et al., 2020). Recently, a fusion 

approach of LST images was proposed using the non-linear fitting model, such as a deep learning-based CNN 

(i.e., STTFN; Yin et al., 2021). It should be noted that STFN is able to build up the complicated relationship 
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without manually designed mathematical rules as the conventional fusion models because it can directly model 

the nonlinear relationship between the input and output LSTs.  

 Cloud contamination 

Thermal infrared (TIR) sensors such as MODIS, Landsat, and ASTER are the most widely used ones to retrieve 

LSTs. One of the most critical problems when using TIR-derived LSTs is the sensitivity to atmospheric and 

weather conditions. Unfortunately, LST retrievals from TIR sensors are not available under clouds due to their 

inability to penetrate clouds (i.e.,cloud contamination). 

 Model generalization 

Most LST downscaling methods developed for the past decade have been evaluated over local areas,which limits 

the generalization of the proposed methods. The performance of the methods often varied by the characteristics 

of climate and land cover types (Wang et al., 2020; Yang et al., 2017). One possible solution to ensure LST 

downscaling approaches to have a generalized capability is to evaluate them over multiple areas with different 

conditions and optimize the related parameters.  

4.5.2. STFN Deep Learning networks for ECOSTRESS thermal images 

 

In the course of AFRI4Cast EO data enhancement, ECOSTRESS LST data will be sharpened with the application 

of a deep learning based SpatioTemporal Temperature Fusion Network (STFN) method, as described by Wang et 

al. (2022) and Yin et al. (2021), for the generation of fine spatiotemporal resolution LST products is proposed. In 

STFN, a multi- scale fusion convolutional neural network will be employed to build the complex nonlinear 

relationship between input and output LSTs. Thus, unlike other LST spatiotemporal fusion approaches, STFN is 

able to form potentially complicated relationships through the use of training data without manually designed 

mathematical rules making it more flexible and intelligent than other methods.   

Additionally, two targets fine spatial resolution LST images are predicted and then integrated by a 

SpatioTemporal-Consistency (STC)-Weighting function to take advantage of spatiotemporal consistency of LST 

data. A set of analyses using two real LST data sets obtained from ECOSTRESS and Moderate Resolution 

Imaging Spectroradiometer (MODIS) or Sentinel 3 LST, will be used.  

If new acquisitions of the ECOSTRESS cannot be planned, the temporal frequency of the current acquisitions (1- 

7 days, 4 days on average) will be enhanced to increase the available LST values to a daily frequency. Fusion-

based methods determine the relationship between known image pairs of LST, at fine and coarse resolution, and 

downscale coarse resolution (e.g., MODIS LST) when fine resolution (ECOSTRESS LST) LST is not available. 

The proposed solution involves the use of a deep learning-based spatiotemporal fusion network (STFN), which 

fuses images based on convolutional neural networks (CNN) handling the non-linearity of LST temporal changes. 

Fusion-based methods determine the relationship between known image pairs of LST, at fine and coarse 

resolution, and downscale coarse resolution (e.g., MODIS LST) when fine resolution (ECOSTRESS) LST is not 

available. The proposed solution involves the use of a deep learning-based spatiotemporal fusion network (STFN), 

which fuses images based on convolutional neural networks (CNN) handling the non-linearity of LST temporal 

changes.  

In STFN, a multi-scale fusion Convolutional Neural Network is employed to build the complex nonlinear 

relationship between input and output variables. Thus, unlike other spatiotemporal fusion approaches, STFN is 
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able to form potentially complicated relationships through the use of training data without manually designed 

mathematical rules making it more flexible and intelligent than other methods. 

The multi-scale fusion CNN contains three parts: 

1. super-resolution of temporal change between the input target and neighboring coarse spatial 

resolution LST images 

2. high-level feature abstraction of neighboring fine spatial resolution data 

3. integration of the extracted multi-scale features. 

Furthermore, to take advantage of the temporal consistency commonly observed in a series of LST images, the 

STFN uses two fine-coarse spatial resolution LST image pairs observed before and after the target date to train 

two multi-scale fusion CNNs, and then combine their predictions using a Spatiotemporal-Consistency (STC)-

Weighting function. 

Considering the special characteristics of temperature, there are four differences of STFN compared with existing 

deep learning-based spatiotemporal fusion methods: 

 in the super-resolution process, fine spatial resolution image is used to provide fine spatial texture 

information 

 residual learning modules are applied to preserve lost features in the convolution and fuse features at 

different scales 

 in the training process, Huber loss function is used for decreasing the negative influence of noises and 

outliers, 

 In the combination, a STC-weighting strategy which considers spatiotemporal consistency is 

employed to derive the final result. 

 

ECOSTRESS and MODIS LST data will be used as fine and coarse spatial resolution data, respectively, with 

Landsat TIRs and Sentinel 3 LST as alternatives. 

The aim is to obtain a pair of fine and coarse LST images that pre-date the target date, for which a coarse MODIS 

image is available, together with another pair of fine and coarse images that post-dating the target date. Then, 

from one MODIS LST image at the target date and two pairs of ECOSTRESS and MODIS images at the 

neighboring dates, a high resolution (ECOSTRESS -like) LST image is predicted. 

For simplicity, the target date is denoted as t2, and the dates pre- and post-dating t2 are denoted as t1 and t3, 

respectively. Accordingly, the MODIS coarse resolution image (LST) at t2 is denoted as M2, and the 

ECOSTRESS-MODIS image pairs (LST) at dates t1 and t3 are denoted as E1 and M1 and E3 and M3, respectively. 
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Figure 12. Flowchart of the Spatiotemporal Fusion Network. 

 

As depicted in Fig.12, the proposed STFN generates a fine spatial resolution image via a three-stage process:   

1. forward and backward model training  

2. forward and backward prediction   

3. combination of forward and backward predicted high images to yield a final fine spatial 

resolution predicted image for t2  
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The input fine and coarse spatial resolution images are first preprocessed. Then, a forward multi-scale fusion 

CNN, which blends Ε1, M1, and M3 to predict Ε3
1>3, is gradually learned and optimized; the superscript 1>3 

indicates forward modeling based on the image pairs at t1 and t3. Additionally, an optimally trained backward 

multi-scale fusion CNN can be obtained by using Ε3, M3 and M1 to predict Ε1
3>1, the superscript highlights 

backward modeling. In the prediction stage, two predicted fine spatial resolution LST images, which are expressed 

as Ε2
1>2 and Ε2

3>2, are generated by the optimal forward and backward multi-scale fusion CNNs, respectively. 

Then these two layers are combined via a STC-Weighting function.   

 

 
Figure 13. Architecture of Multiscale Fusion CNN. 

 

The architecture of multi-scale fusion CNN is illustrated using the prediction of Ε2
1>2 from E1, M1 and M2 as 

example (Fig. 13). The multi-scale fusion CNN is a fully convolution network, which enables an end-to-end 

mapping from three input images to an output high resolution image.  

It first extracts high-level features of E1 and super resolves the change image between M2 and M1 at the same time, 

then fuses and retrieves the extracted feature maps to the fine spatial resolution result. Therefore, the whole 

architecture of the multi-scale fusion CNN contains three major parts, termed here as  

 Extraction-Net, a two-layer convolution network employed to extract the high-level features of the 

ECOSTRESS image and provide fine abundant spatial pattern information for the prediction. 

 Super-Resolution-Net. The focus in the fusion process is on locating temporal change between the target 

and neighboring dates. By using a super-resolution module, the coarse spatial resolution  pixels of the 

temporal change (Subtraction) image are disaggregated  into fine spatial resolution pixels, which can 

offer more spatial pattern information. To implement the super-resolution, a modified version of the state-

of-the-art super-resolution model “Wide Activation for Efficient and Accurate Image Super-Resolution 

(WDSR)”, (Yu et al., 2018), will be used ,referred to here as slim-WDSR.  
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 Integration-Net, which is made up of three stacked convolutional layers. The generated feature maps are 

integrated and used to estimate the target image gradually through the Integration-Net  

  

The core components of the Multiscale Fusion CNN are described on the following table.  

 

 
Table 14. Core components of the Multiscale Fusion CNN. 

LAYERS OF THE MULTI-SCALE FUSION CNN 

Extraction-Net Super-Resolution-Net Integration-Net 

level layer level layer level layer 

X1 

conv 3×3, 32, 

Batch 

Normalization, 

ReLU 

SR1 conv 3×3, 32 F1 

conv 3×3, 32, 

Batch 

Normalization, 

ReLU 

X2 conv 3×3, 32 SR2 
conv 1×1, 64, Batch 

Normalization, ReLU 
F2 

conv 3×3, 16, 

Batch 

Normalization, 

ReLU 

 

SR3 
conv 1×1, 25, Batch 

Normalization, ReLU 
F3 conv 3×3, 1 

SR4 
conv 1×1, 32, Batch 

Normalization, ReLU 

 

SR5 
conv 3×3, 32, Batch  

Normalization, ReLU 

SR6 conv 3×3, 32 

 

4.5.3. Service outputs  

 

The ECOSTRESS spatiotemporal enhancement component will use the proposed methodology in order to deliver 

to AFRI4Cast the following product services:  

Daily Land Surface Temperature at a spatial resolution of 70 m. If day/night ECOSTRESS LST acquisitions 

are found, over the pilot areas, at a proper revisit interval, the STFN will produce dual LST layers. Considering 

the ECOSTRESS revisit period, as 2 temporal instances Di and Dn, where i goes from 1 to n, spatiotemporal 

enhancement component will produce daily LST layers d1,d2,..,dn with a pixel size of 70 m. 

 

 

 

 



D3 

60 
                                                                                                                                                                         

   
                                                                            

 

4.6. Copernicus Sentinel-2- Crop monitoring services 

Crop monitoring services based on Copernicus Sentinel-2 data will serve as a subsidiary service. This service will 

act complementary to the field data in case of field data insufficiency as, apart for correcting geolocation of 

PRISMA imagery, Sentinel-2 images are also used to compute on a yearly basis: 

 Crop type maps; 

 Crop phenology assessment and 

 Crop phenology monitoring maps; 

4.6.1. Crop type maps 

 

Various vegetation types have different growth behaviors and thus different characteristics of NDVI time series 

curves. Then, classification methods based on multi-temporal image series have been well acknowledged in 

agriculture, since crop systems usually disclose specific and often separable seasonal trends, within a particular 

agro-ecological area, during the annual cycle (Mather and Tso, 2009; Pax Lenney et al., 1996). As a rule, taking 

advantage of a large number of sequential multi-temporal images assures to effectively describe the crop 

seasonality. Nevertheless, when the number of time-series images is too large and significant correlation among 

them exists, the dataset becomes redundant: additional images add little information but increase the computing 

complexity. In the field of signal detection and signal matching applications time series methods that can be 

classified as time-domain or frequency-domain, are commonly used: the former ones use mathematical tools such 

as autocorrelations, cross-correlations and convolutions(Quiero et al., 2015). A phenology-based classification 

(PBC) approach has been developed and tested, which doesn’t need to model NDVI variation with some logistic 

or double sigmoid fitting function because the discriminating agent will be the degree of cross-correlation of the 

interpolated phenology profiles. In fact, cross-correlation is widely used as effective similarity measure in 

matching tasks, to be able to discriminate for different crop species using Sentinel-2 MSI imagery. 

The first step of the crop mapping procedure is the co-registration of the entire image collection to evaluate the 

NDVI, masking out all the pixels that are cloudy or not vegetated or saturated, using the scene classification map 

provided by Sentinel-2. Each Sentinel-2 L2A image includes a classification map (SCL, Scene Classification) at 

20 meters resolution which provides a first coarse classification, that gives preliminary information such as 

vegetated/not-vegetated pixel, cloudy/not-cloudy, and makes possible a first data-sanitation process. To 

discriminate crop species using phenology, profiles of the characteristic crops of the area of interest are necessary, 

so a training dataset is needed to retrieve from the selected training points and from the time series images the 

reference phenologies for each crop type. These data are used to implement a set of reference phenologies to be 

used during the cross-correlation comparison in the classification process. The overall process is outlined in Figure 

14. 
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Figure 14. Outline of the overall classification process (Saquella et al., 2022). 

 

On one side of the chain the training dataset is processed to obtain the reference library needed for the comparison, 

performing a statistical analysis on each polygon-like crop field and extracting for each polygon the mean value 

and standard deviation with the aim of extrapolate a single characteristic and representative phenology profile for 

the whole crop field, taking advantage of the crop calendars as first references in the assessment of the phenology 

profiles. On one side of the chain the training dataset is processed to obtain the reference library needed for the 

comparison, performing a statistical analysis on each polygon-like crop field and extracting for each polygon the 

mean value and standard deviation with the aim of extrapolate a single characteristic and representative phenology 

profile for the whole crop field, taking advantage of the crop calendars as first references in the assessment of the 

phenology profiles.  

On the other side of the processing chain all the crop fields are investigated and detected. The procedure goes 

through several steps. Firstly, selecting the best and the clearest NDVI images, a multi-image edge detection and 

a subsequent watershed algorithm were applied to get the image segmentation. This crucial step can be improved 

in the preprocessing phase with an aggregation of multiple canny edge detection images on cloud-free images, 

with subsequent morphological transformations such as small objects removal, filling holes, dilation and thinning 

to clean the noise (Figure 15). Once all the crop fields are recognized and represented as isolated homogeneous 

objects, a statistical and morphological analysis is carried out to find and isolate a single target pixel which will 

be representative of the whole field analyzing its spectral variability over its geometry (Luciani et al., 2021). 

Centroids are representative of objects geometry (being the arithmetic mean of all pixels within the objects), and 

the target points are selected as the closest pixels to the centroids, included within the field polygon perimeter. 

Target point phenology is derived by statistically analyzing a region of pixels centered around it, for example a 

10-by-10 pixels square around the target point within the object, so that it is considered the phenology variability 

across a good part of the field. For classification purposes this simplification seems enough to reduce the 

computational time over wide areas, retaining a good accuracy provided by the previous segmentation.  
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Figure 15. Multi image Edge detection (Bothaville, South Africa, 2021) (Saquella et al., 2022) 

 

The processing chain goes on with the phenology extraction step. After masking out all the out of bounds crops 

outside the cropland areas of the ESA World Land Cover mask, for each crop target pixel the NDVI behaviour is 

extracted over a year and averaged over the centroid’s region. Then, NDVI series is interpolated in time using a 

Modified Akima cubic Hermit interpolation method to avoid overshoots in the building process of phenology 

profiles.  

Each target crop within the crop mask will be classified by its centroid’s region associated phenology. A cross-

correlation sequence among the target crops phenology and the reference phenologies measures the degree of 

similarity among them. By means of cross-correlation comparison, the crop type is found when the best match 

occurs, looking for the highest correlation value associated with the minimum time lag, choosing properly a set 

of thresholds to be applied on correlation and lag values, beyond which no class is associated to the target crop 

(Luciani et al., 2021). 

An example of crop map obtained by using the above described procedure is shown in Figure 16. 

 

 

 
Figure 16. Crop type map. 
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Algorithm Outline/Flow Chart 

The NDVI time series is computed by using the Sentinel-2 images. A time series of one year of images is used to 

extract the key parameters characterizing different phenological cycle associated with different crop types. 

The main crops of interest as far as selected are listed below: 

 Wheat 

 Maize 

 Rice 

The processing chain in AFRI4Cast crop phenology monitoring is mainly composed of the following stages: 

1. Near real time collection of NDVI maps 

2. Download of EO data and image processing. 

3. Extraction of phenology characterizing parameters (Fig 17.) 

4. NDVI time series analysis and parameter retrieval. Phenological signatures are retrieved as the situation 

on the ground is under development. As long as the phenological signature is incomplete, only a partial 

comparison can be carried out with the reference signature. 

5. Cross-correlation based classification procedure. 

 
Figure 17. NDVI values of summer wheat at the transition dates describing the key points of the phenological 

development of a crop species; the phenological curve has been retrieved from the NDVI raw values and the 

compared with reference phenology from FAO crop calendar.  

 

4.6.2. Crop phenology assessment  

 

Crop phenology assessment and monitoring services aim at: 

 assessing the crop growth behaviour by comparing the actual vegetation index (NDVI or LAI) with the 

expected behaviour based on reference phenology for crops present in the area of interest or previous year 

crop phenology parameters; 

 assessing spatio-temporal variability in cropping fields; and 

 detecting any change in the phenology of the crop by comparing the most recent phenology parameters 

extracted by using the satellite image time series with the reference calendar, or the previous year 

phenology.  
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Therefore, these two services, based on Sentinel-2 images, allows to assess the crop behavior and monitor changes 

in the phenology of the crops, if any. The change of course could be due to a change in the type of crop present in 

the pixel, or seasonal growth changes as reaction to climate changes. Concerning possible changes due to crop 

rotation or changes in the land use this could be assessed by looking at the updated crop type map. 

Spatial variability in crop yield is the result of complex interaction of factors influencing crop growth that include 

soil (such as nutrients, soil water availability), topographical factors (such as elevation) and climatic factors (such 

as rainfall and temperature). In addition to their spatial variability, some of these factors such as climate have 

temporal variability, which causes the spatial pattern of crop yield to vary from season to season. 

Remote sensing vegetation indices have potential to assess crop growth variability by quantifying relative growth 

and health condition of the crop. Remote sensing phenology estimates phenological growth stages including the 

start of season and end of season from multi-temporal vegetation index data. The derived metrics may not 

necessarily correspond directly to conventional, ground-based phenological events, but they provide important 

information about the vegetation growth dynamics that can be associated with environmental factors such as soil 

properties and meteorological conditions. 

Input 

1. Map of the agro-ecologic zones. 

2. Crop type map 

3. Existing crop calendar map 

4. Sentinel-2 images. 

Output 

The crop phenology assessment provides a 7-band raster, in geotiff format. The 7 bands of the geotiff file contain 

(see Table 15.):  

i. key parameters of the phenology associated with each pixel corresponding to agricultural areas, based on 

annual time series of Vegetation Index computation, that are: SOS (Start Of Season), EOS (End Of 

Season), DOYM (day of the NDVImax), and CropType. 

ii. Indication on the season: first or second season. 

The map will be updated every year. 

 

Table 15. List of variables contained in the output file of the crop phenology assessment product. 

Type of Data Parameter 
Spatial 

Resolution 

Temporal 

Resolution 
Units Range 

Start of Season 1 SOS1 10 m Annual dekad 0 – 72 

Day of max NDVI 

1 
DOYM1 10 m Annual dekad 0 – 72 

End of Season 1 EOS1 10 m Annual dekad 0 - 72 

Start of Season 2 SOS2 10 m Annual dekad 0 – 72 

Day of max NDVI 

2 
DOYM2 10 m Annual dekad 0 – 72 

End of Season 2 EOS2 10 m Annual dekad 0 - 72 

Crop Type CT 10 m Annual dimensionless Int 0:255 
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Methodology 

Phenological profiles provide historical NDVI projection over a specific site and can be used to discriminate for 

different crop species and to identify crop rotation cycles and biomass seasonal trends. The overall algorithm 

outline/flow chart is presented in Figure 18.  

An object-based algorithm has been designed to automatically retrieve vegetation phenological metrics starting 

from NDVI time series. The NDVI values from cloud are to be excluded filtering the time series with the scene 

classification map provided by sentinel-2 data, and the missing values over the year are covered interpolating the 

available NDVI values. 

The NDVI time series of the reference dataset used for crop mapping are determined by interpolating the raw 

NDVI datasets. After filtering outliers and smoothing with rolling mean and extracting the upper envelope of the 

growing stage, the phenological function were then analysed to retrieve the phenological metrics. For each object 

already classified, it was stored the corresponding reference phenology that has the best matching. Using this a-

priori information from the crop type map and the reference phenology that best matches every curve and knowing 

the cross-correlation lag and all the phenological parameters of the reference phenology it is possible to calculate 

for each crop field the start of the season and the end of the season. Vegetation development is well described by 

the following phenological metrics:  

The following parameters are meant to be stored: 

 DOYS,  

 DOYE and  

 DOYMax (describing SOS, EOS and NDVI Max respectively), correspond to local minimum or 

maximum of the phenological function (first derivative equals to zero). 

 

 

Algorithm Outline/Flow Chart  

Algorithms to assess phenology are outlined as it follows: 

 

 
Figure 18. Crop Phenology assessment algorithm outline. 

 

NDVI time 
series

•From Sentinel 2 Imagery the 
NDVI historical projection 
is defined over the area of 
interest 

Reference 
phenological 
functions

•From raw data the interpolation results in a 
complete phenological function for 
reference crop fields. With a comparison 
with the best matching reference is possible 
to calculate phenology for each crop

Phenological 
metrics 
extraction

•Phenological 
parameters at transition 
dates are retrieved
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4.6.3. Crop phenology monitoring 

 

As already mentioned in chapter 4.6.2., crop phenology and monitoring services target on the evaluation of crop 

growth behavior by comparing the actual vegetation index (NDVI or LAI) with the anticipated behavior based on 

reference phenology for crops present in the area of interest or previous year crop phenology parameters. The 

evaluation of spatiotemporal variability in cropping fields as well as the detection of any change in the phenology 

of the crop are also aspects of the same service.  

Output 

The crop phenology monitoring provides, at 5 or 10 days frequency, a 2-band raster, in geotiff format. The geotiff 

file contains: band 1 = difference between the day of the year of the actual NDVI and the nearest day of the 

previous year with this NDVI value (as described in the methodology), band 2 = time reference: -1, the actual day 

is antecedent the DOYG; +1, the actual day is later the DOYG. 

Changes in vegetation phenology may in turn alter land ecosystem productivity. The phenology assessment 

service is designed for quantifying shifts in plant phenology in response to climate and seasonal change.  

The phenology assessment procedure takes place with respect to a reference phenology derived from crop calendar 

or from the phenology monitoring services. The assessment procedure takes place on an object base in near-real 

time. 

The Overall algorithm outline/flow chart is presented in Figure 20. The actual NDVI value is retrieved, from the 

last Sentinel-2 image, over the area of interest, then stored and compared with the reference phenology or last 

available phenology. Two layers are then provided. 

A pixel-based data vector is stored with NDVI values and the associated DOY as soon as they have been acquired. 

Each NDVI-DOY couple is compared according to the following procedure: 

1. Using FAO crop calendar, we can exclude the pixels that correspond to crops out of the current season, 

considering only the growing season for the following calculations. 

2. The nearest day of the previous year with the same value of NDVI as the actual one is computed 

interpolating over the reference phenology (Figure 19). 

3. The value of the sign of this difference is saved at +1 for early growth and -1 for late growth from the 

previous year. 

 

Finally, we note that the comparison takes place when the phenological signature of the actual observation has 

not yet classified: in the ascending section of the phenological function in particular, there’s no way to ascertain 

the crop type under observation and we can only proceed assuming that we are observing the same phenological 

development of the previous year (that is, the same crop type). 
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Figure 19. An example of Actual NDVI value comparison with respect to the reference phenology previously 

monitored. 

 

 

Algorithm Outline/Flow Chart  

Algorithms to monitor phenology are outlined as it follows: 

 

                       
Figure 20. Crop Phenology monitoring algorithm outline. 

 

 

 

 

 

  

NDVI 
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•The NDVI is retrieved for 
each S2 image over the area 
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available

Phenology 
monitoring

•The NDVI actual value is 
compared with the 
expected or reference 
NDVI curve 

Report

•A raster map is 
computed on a pixel 
base to report the 
result of the 
assessment procedure
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Appendix 1: Formulas for a selection of vegetation indices adapted to PRISMA sensor.  

 

List of selected spectral indices of interest and corresponding formulas specialized for the PRISMA channels. 

 

 

Name Formula PRISMA channels 

Structure 

NDVI (NIR-RED)/(NIR+RED) (B17 – B34)/( B17 + B34) 

MCARI 
[(R700 – R670)-0.2*(R700-

R550)]*R700/R670 
[(B30 – B33)-0.2*(B30-B47)]*B30/B33 

MSAVI 
[2*R800+1-sqrt((2*R800-1)^2-8*(R800-

R600))]/2 
[2*B20+1-sqrt((2*B20-1)2-8*(B20-B41))]/2 

MTVI 1.2*[1.2*(R800-R550)-2.5*(R670-R550)] 1.2*[1.2*(B20-B47)-2.5*(B33-B47)] 

OSAVI 1.16*(R800-R700)/(R800+R670+0.16) 1.16*(B20-B30)/(B20+B33+0.16) 

SPVI 
0.4*[(3.7*(R800-R670)-1.2*abs(R530-

R670)] 
0.4*[(3.7*(B20-B33)-1.2*abs(B49-B33)] 

RDVI (R800-R670)/(R800+R670)0.5 (B20-B33)/(B20+B33)0.5 

Chlorophyll 

CSI R695/R760 B31/B24 

Greenness 

Index 
R554/R677 B47/B33 

GM R750/R700 B25/B30 

NPQI (R415-R435)/(R415+R435) (B65-B62)/(B65+B62) 

PRI (R570–R531)/(R570+R531) (B45–B50)/(B45+B50) 

Red Edge 

Point 

700+40*(Rrededge – R670)/(R740-R700); 

Rrededge = (R670+R780)/2 

700+40*(BBededge – B33)/(B26-B30); BBededge = 

(B33+B23)/2 

SR705 R750/R705 B25/B30 

TCARI 
3*[(R700 – R670)-0.2*(R700-

R550)]*(R700/R670) 
3*[(B30 – B33)-0.2*(B30-B47)]*(B30/B33) 

TVI 0.5·[120*(R750-R550)-200*(R670-R550) 0.5·[120*(B25-B47)-200*(B33-B47) 
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Vogelmann 

Index 
R740/R720 B26/B28 

ZTM R750/R710 B25/B29 

SR R675/R700 B33/B30 

PSSR R800/R675 B21/B33 

LCI (R850-R710)/(R850+R680) (B16-B29)/(B16+B32) 

MLO R531/R645 B50/B36 

MSR (R800/R670−1)/sqrt(R800/R670+1) (B20/B33-1)/(B20+B33+1)0.5 

Carotenoids and Anthocyanin 

ARI 1/R550 – 1/R700 1/B47 – 1/B30 

CRI 1/R510 – 1/R550 1/B52 – 1/B47 

PSSRc R800/R500 B21/B54 

SIPI (R800−R445)/(R800−R680) (B20−B61)/(B20−B32) 

Leaf Water 

DSWI (R802+R547)/(R1657+R682) (B20+B47)/(B103+B32) 

LWVI (R1094-R1205)/(R1094+R1205) (B155-B145)/(B155+B145) 

MSI R1600/R820 B109/B19 

NDWI (R860-R1240)/(R860+R1240) (B15-B142)/(B15+B142) 

PWI R970/R900 B168/B11 

SRWI R858/R1240 B15/B142 

Dry matter 

SWIRV1 
37.27*(R2210+R2090)+26.27*(R2208-

R2090)-0.57 
37.27*(B2210+B2090)+26.27*(B2208-B2090)-0.57 

CAI 0.5*(R2015+R2195)-R2106 0.5*(B64+B43)-B54 

NDLI 
[(log(R1094))-1 – (log(R1205))-1]/ 

[(log(R1094))-1 + (log(R1205))-1] 

[(log(B155))-1 – (log(B145))-1]/ [(log(B155))-1 + 

(log(B145))-1] 

NDNI [(log(R1510))-1 – (log(R1680))-1]/ [(log(B117))-1 – (log(B101))-1]/ [(log(B117))-1 + 
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[(log(R1510))-1 + (log(R1680))-1] (log(B101))-1] 

BGI R450/R550 B60/B47 

BRI R450/R690 B60/B31 

RGI R690/R550 B31/B47 

SRPI R430/R680 B63/B32 

NPCI (R680-R430)/(R680+R430) (B32-B63)/(B32+B63) 

PSRI (R680−R500)/R750 (B32−B53)/B25 

Fluorescence 

CUR (R675*R550)/(R683)2 (B33*B47)/(B32)2 

LIC (R800-R680)/(R800+R680) (B21-B32)/(B21+B32) 

Values of bands equal or higher than 66 refer to the numbering of the PRISMA SWIR sensor. 

R refers to the central wavelength of the narrow band reflectance channel and B refers to the PRISMA spectral band 

 

Appendix 2: PRISMA spectral channels.  

 

Numbering of the bands as they appear in the PRISMA hdf5 file.  

VNIR bands SWIR bands 

Num. λ Num. λ Num. λ Num. λ Num. λ 

1 0 51 519.5438 1 2497.116 61 2044.681 121 1469.931 

2 0 52 512.0464 2 2490.219 62 2036.261 122 1459.316 

3 0 53 504.5117 3 2483.793 63 2027.727 123 1449.189 

4 977.3654 54 497.0587 4 2477.055 64 2019.321 124 1438.466 

5 967.0267 55 489.7949 5 2469.627 65 2010.661 125 1427.375 

6 956.2715 56 482.5482 6 2463.03 66 2002.111 126 1416.537 

7 944.6273 57 475.3189 7 2456.586 67 1993.548 127 1405.627 
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8 934.1121 58 468.0984 8 2449.142 68 1984.853 128 1394.754 

9 923.9502 59 460.7318 9 2442.403 69 1976.013 129 1383.28 

10 913.4451 60 453.3895 10 2435.544 70 1967.342 130 1372.912 

11 902.8016 61 446.0147 11 2428.668 71 1958.624 131 1361.053 

12 892.0809 62 438.6569 12 2421.237 72 1949.901 132 1349.788 

13 881.4561 63 431.3347 13 2414.357 73 1941.111 133 1339.129 

14 870.7426 64 423.7848 14 2407.605 74 1932.26 134 1328.299 

15 859.9731 65 415.839 15 2400.036 75 1923.386 135 1317.257 

16 849.21 66 406.9934 16 2393.039 76 1914.302 136 1306.218 

17 838.5272   17 2386.062 77 1904.935 137 1295.422 

18 827.9195   18 2378.771 78 1896.091 138 1284.488 

19 817.311   19 2371.552 79 1887.081 139 1273.496 

20 806.7111   20 2364.595 80 1878.743 140 1262.532 

21 796.127   21 2357.294 81 1868.173 141 1250.98 

22 785.6596   22 2349.792 82 1859.559 142 1240.215 

23 775.2735   23 2342.823 83 1850.554 143 1229.185 

  24 
764.8565 

  24 
2335.526 

84 
   

1841.326 
144 

1217.864 

25 754.4696   25 2327.824 85 1832.027 145 1207.274 

26 744.1495   25 2320.896 86 1822.441 146 1196.339 
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27 733.9552   27 2313.201 87 1813.051 147 1185.588 

28 723.8799   28 2305.723 88 1803.59 148 1174.714 

29 713.7269   29 2298.609 89 1793.953 149 1163.676 

30 703.737   30 2290.827 90 1784.717 150 1152.65 

31 694.1284   31 2283.493 91 1775.118 151 1142.07 

32 684.1373   32 2276.054 92 1765.513 152 1131.305 

33 674.4644   33 2268.288 93 1755.833 153 1120.676 

34 664.8941   34 2260.867 94 1746.219 154 1109.889 

35 655.4188   35 2253.11 95 1736.488 155 1099.278 

36 645.9638   36 2245.449 96 1726.652 156 1088.761 

37 636.6763   37 2237.904 97 1716.859 157 1078.216 

38 627.7784   38 2230.008 98 1707.095 158 1067.795 

39 618.72   39 2222.426 99 1697.294 159 1057.574 

40 609.9582   40 2214.625 100 1687.427 160 1047.675 

41 601.0144   41 2206.843 101 1677.319 161 1037.988 

42 592.339   42 2199.135 102 1667.185 162 1029.344 

43 583.8441   43 2191.1 103 1656.933 163 1018.536 

44 575.4868   44 2183.42 104 1647.232 164 1008.644 

45 567.2061   45 2175.344 105 1637.092 165 998.9082 

46 559.0203   46 2167.485 106 1627.021 166 988.9179 
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47 550.9146   47 2159.564 107 1616.834 167 979.224 

48 542.8851   48 2151.386 108 1606.491 168 969.8449 

49 535.0526   49 2143.466 109 1596.245 169 959.974 

50 527.3053   50 2135.51 110 1585.86 170 951.4014 

    51 2127.337 111 1575.627 171 943.3579 

    52 2119.231 112 1565.369 172 0 

    53 2111.039 113 1554.817 173 0 

    54 2102.821 114 1544.226    

    55 2094.625 115 1533.776    

    56 2086.382 116 1523.222   

    57 2077.992 117 1512.633    

    58 2069.796 118 1502.024    

    59 2061.379 119 1491.429    

    60 2053.008 120 1480.842    
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END OF THE DOCUMENT 


